Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyruvate between

The Pyruvate Branchpoint Partitions Pyruvate between Acetyl-CoA and Oxaloacetate... [Pg.299]

Acetyl-CoA is the only compound that can enter the TCA cycle when the cycle is operating purely oxidatively, but one molecule of oxaloacetate must enter for each molecule of citrate, a-ketoglutarate, or succinyl-CoA that is removed for use in biosynthesis. It follows that pyruvate is a major metabolic branchpoint in a cell that is living on carbohydrate. The partitioning of pyruvate between decarboxylation to acetyl-CoA and carboxylation to oxaloacetate is, in effect, partitioning between the two major metabolic uses of pyruvate oxidation of carbon for regeneration of ATP and conversion to starting materials for biosynthesis. [Pg.299]

When the ScPDCl gene is over expressed in S. cerevisiae, the overproduction of Pdc affects flux distribution at the pyruvate branch point by influencing competition for pyruvate between Pdc and the mitochondrial Pdh complex [166]. In respiratory cultures ofS. cerevisiae, Pdc overproduction does not effect the maximum glycolytic capacity. At high intracellular concentrations, pyruvate is predominantly metabolized via Pdc, but at low pyruvate concentration, it is metabolized through Pdh [161]. The purified S. cerevisiae Pdh has a much lower... [Pg.137]

Now at some pH comparable to pK, two waves are observed, corresponding to the reduction of both HA and A. The currents are proportional to the concentrations of the electroreducible species. Because the pH and pK are known, the concentrations of HA and A in the bulk solution can be calculated. It is then found that the observed polarographic currents cannot be accounted for on tbe basis of the known bulk concentrations. It is concluded that the ratio of the concentrations at the electrode surface is different from the ratio of bulk concentrations, and this is a consequence of the coupling between the chemical and electrode processes. In the pyruvic acid system, HA can be converted to the hydroxy acid by the electrode... [Pg.182]

Pyruvate carboxylase is the most important of the anaplerotie reactions. It exists in the mitochondria of animal cells but not in plants, and it provides a direct link between glycolysis and the TCA cycle. The enzyme is tetrameric and contains covalently bound biotin and an Mg site on each subunit. (It is examined in greater detail in our discussion of gluconeogenesis in Chapter 23.) Pyruvate carboxylase has an absolute allosteric requirement for acetyl-CoA. Thus, when acetyl-CoA levels exceed the oxaloacetate supply, allosteric activation of pyruvate carboxylase by acetyl-CoA raises oxaloacetate levels, so that the excess acetyl-CoA can enter the TCA cycle. [Pg.663]

Acetyl-CoA is a potent allosteric effector of glycolysis and gluconeogenesis. It allosterically inhibits pyruvate kinase (as noted in Chapter 19) and activates pyruvate carboxylase. Because it also allosterically inhibits pyruvate dehydrogenase (the enzymatic link between glycolysis and the TCA cycle), the cellular fate of pyruvate is strongly dependent on acetyl-CoA levels. A rise in... [Pg.750]

Figure 2. Mechanism of PDH. The three different subunits of the PDH complex in the mitochondrial matrix (E, pyruvate decarboxylase E2, dihydrolipoamide acyltrans-ferase Ej, dihydrolipoamide dehydrogenase) catalyze the oxidative decarboxylation of pyruvate to acetyl-CoA and CO2. E, decarboxylates pyruvate and transfers the acetyl-group to lipoamide. Lipoamide is linked to the group of a lysine residue to E2 to form a flexible chain which rotates between the active sites of E, E2, and E3. E2 then transfers the acetyl-group from lipoamide to CoASH leaving the lipoamide in the reduced form. This in turn is oxidized by E3, which is an NAD-dependent (low potential) flavoprotein, completing the catalytic cycle. PDH activity is controlled in two ways by product inhibition by NADH and acetyl-CoA formed from pyruvate (or by P-oxidation), and by inactivation by phosphorylation of Ej by a specific ATP-de-pendent protein kinase associated with the complex, or activation by dephosphorylation by a specific phosphoprotein phosphatase. The phosphatase is activated by increases in the concentration of Ca in the matrix. The combination of insulin with its cell surface receptor activates PDH by activating the phosphatase by an unknown mechanism. Figure 2. Mechanism of PDH. The three different subunits of the PDH complex in the mitochondrial matrix (E, pyruvate decarboxylase E2, dihydrolipoamide acyltrans-ferase Ej, dihydrolipoamide dehydrogenase) catalyze the oxidative decarboxylation of pyruvate to acetyl-CoA and CO2. E, decarboxylates pyruvate and transfers the acetyl-group to lipoamide. Lipoamide is linked to the group of a lysine residue to E2 to form a flexible chain which rotates between the active sites of E, E2, and E3. E2 then transfers the acetyl-group from lipoamide to CoASH leaving the lipoamide in the reduced form. This in turn is oxidized by E3, which is an NAD-dependent (low potential) flavoprotein, completing the catalytic cycle. PDH activity is controlled in two ways by product inhibition by NADH and acetyl-CoA formed from pyruvate (or by P-oxidation), and by inactivation by phosphorylation of Ej by a specific ATP-de-pendent protein kinase associated with the complex, or activation by dephosphorylation by a specific phosphoprotein phosphatase. The phosphatase is activated by increases in the concentration of Ca in the matrix. The combination of insulin with its cell surface receptor activates PDH by activating the phosphatase by an unknown mechanism.
Figure 17-5. Oxidative decarboxylation of pyruvate by the pyruvate dehydrogenase complex. Lipoic acid is joined by an amide link to a lysine residue of the transacetylase component of the enzyme complex. It forms a long flexible arm, allowing the lipoic acid prosthetic group to rotate sequentially between the active sites of each of the enzymes of the complex. (NAD nicotinamide adenine dinucleotide FAD, flavin adenine dinucleotide TDP, thiamin diphosphate.)... Figure 17-5. Oxidative decarboxylation of pyruvate by the pyruvate dehydrogenase complex. Lipoic acid is joined by an amide link to a lysine residue of the transacetylase component of the enzyme complex. It forms a long flexible arm, allowing the lipoic acid prosthetic group to rotate sequentially between the active sites of each of the enzymes of the complex. (NAD nicotinamide adenine dinucleotide FAD, flavin adenine dinucleotide TDP, thiamin diphosphate.)...
Theoretically, a fall in concentration of oxaloacetate, particularly within the mitochondria, could impair the ability of the citric acid cycle to metabolize acetyl-CoA and divert fatty acid oxidation toward ketogenesis. Such a fall may occur because of an increase in the [NADH]/[NAD+] ratio caused by increased P-oxida-tion affecting the equilibrium between oxaloacetate and malate and decreasing the concentration of oxaloacetate. However, pyruvate carboxylase, which catalyzes the conversion of pyruvate to oxaloacetate, is activated by acetyl-CoA. Consequently, when there are significant amounts of acetyl-CoA, there should be sufficient oxaloacetate to initiate the condensing reaction of the citric acid cycle. [Pg.187]

Adenosine 5 -hypophosphate (23), an analogue of ADP, can undergo phosphorylation by PEP and pyruvate kinase to yield (24). Adenylate kinase which catalyses the scission of the bond between the a and j8 phosphorus atoms in ADP is, not surprisingly, inhibited competitively by (23). [Pg.129]

Fulcrand, H. et al., A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins. Phytochemistry, 47, 1401, 1998. [Pg.273]

Romero, C. and Bakker, J., Interactions between grape anthocyanins and pyruvic acid, with effect of pH and acid concentration on anthocyanin composition and color in model solutions, J. Agric. Food Chem., 47, 3130, 1999. [Pg.276]

Theoretical studies aimed at rationalizing the interaction between the chiral modifier and the pyruvate have been undertaken using quantum chemistry techniques, at both ab initio and semi-empirical levels, and molecular mechanics. The studies were based on the experimental observation that the quinuclidine nitrogen is the main interaction center between cinchonidine and the reactant pyruvate. This center can either act as a nucleophile or after protonation (protic solvent) as an electrophile. In a first step, NH3 and NH4 have been used as models of this reaction center, and the optimal structures and complexation energies of the pyruvate with NH3 and NHa, respectively, were calculated [40]. The pyruvate—NHa complex was found to be much more stable (by 25 kcal/mol) due to favorable electrostatic interaction, indicating that in acidic solvents the protonated cinchonidine will interact with the pyruvate. [Pg.56]

Figure 4. Side and top views of the energetically most favorable complexes formed between protonated cinchonidine and methyl pyruvate which would yield (R)-methyl lactate (left) and (S)-methyl lactate (right), respectively, upon hydrogenation. The complexes have been accomodated on a space filling model of platinum (111) surface in order to illustrate the space requirements of the adsorbed complexes. For the sake of clarity, in the side views the carbon atoms of the reactant are marked with a white square and the oxygen atoms with an o. Data taken from ref. [41]. Figure 4. Side and top views of the energetically most favorable complexes formed between protonated cinchonidine and methyl pyruvate which would yield (R)-methyl lactate (left) and (S)-methyl lactate (right), respectively, upon hydrogenation. The complexes have been accomodated on a space filling model of platinum (111) surface in order to illustrate the space requirements of the adsorbed complexes. For the sake of clarity, in the side views the carbon atoms of the reactant are marked with a white square and the oxygen atoms with an o. Data taken from ref. [41].
The molecular modelling approach, taking into account the pyruvate—cinchona alkaloid interaction and the steric constraints imposed by the adsorption on the platinum surface, leads to a reasonable explanation for the enantio-differentiation of this system. Although the prediction of the complex formed between the methyl pyruvate and the cinchona modifiers have been made for an ideal case (solvent effects and a quantum description of the interaction with the platinum surface atoms were not considered), this approach proved to be very helpful in the search of new modifiers. The search strategy, which included a systematic reduction of the cinchona alkaloid structure to the essential functional parts and validation of the steric constraints imposed to the interaction complex between modifier and methyl pyruvate by means of molecular modelling, indicated that simple chiral aminoalcohols should be promising substitutes for cinchona alkaloid modifiers. Using the Sharpless symmetric dihydroxylation as a key step, a series of enantiomerically pure 2-hydroxy-2-aryl-ethylamines... [Pg.57]

Since the best results were obtained with the W and W-based oxide catalysts, the reaction was studied in more detail using 20 g portions of these catalysts. The reaction was performed at 230°C, with feed rates of pyruvic acid, air, and water = 10.5, 350, and 480 mmol/h. The contact time defined as volume of catalyst (ml)/rate of gaseous feed (ml/s) was about 5.2 s. The main products were citraconic anhydride and CO2. The amount of acetic acid was very small. No other products were detected except for very small amounts of CO, acetone, and acetaldehyde. A relatively large discrepancy was observed between the amount of consumed pyruvic acid and that of the sum of produced citraconic anhydride and acetic acid. This discrepancy was defined as "loss". [Pg.204]

As for the reaction path from pyruvic acid to citraconic anhydride, it is considered that a condensation reaction first takes place by a reaction between an oxygen atom of carbonyl group and two hydrogn atoms of methyl group in another molecule, followed by oxidative decarboxylation to form citraconic acid. The produced citraconic acid is dehydrated under the reaction conditions used. The proposed reaction path is shown in Figure 7. [Pg.208]

The transesterification reaction can be attributed to the perturbation of the ester carbonyl group in the [CDc/o5e< -substrate] complex. The possibility of this side reaction was predicted by earlier quantum-chemical calculations [18]. These results indicated that the reaction pocket in methyl pyruvate for the nucleophilic attack is situated between the two carbonyl groups, i.e. both carbonyl groups can be perturbed by a nucleophile provided both carbonyl groups have the right "directionality". However, the right "directionality" for both carbonyl groups can be obtained if they are in syn position. [Pg.247]


See other pages where Pyruvate between is mentioned: [Pg.282]    [Pg.177]    [Pg.255]    [Pg.117]    [Pg.7]    [Pg.282]    [Pg.177]    [Pg.255]    [Pg.117]    [Pg.7]    [Pg.2134]    [Pg.507]    [Pg.430]    [Pg.149]    [Pg.525]    [Pg.220]    [Pg.644]    [Pg.745]    [Pg.749]    [Pg.805]    [Pg.127]    [Pg.1151]    [Pg.289]    [Pg.243]    [Pg.6]    [Pg.319]    [Pg.386]    [Pg.116]    [Pg.87]    [Pg.155]    [Pg.157]    [Pg.256]    [Pg.267]    [Pg.336]    [Pg.362]    [Pg.226]    [Pg.244]   
See also in sourсe #XX -- [ Pg.12 ]




SEARCH



© 2024 chempedia.info