Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrimidines review

Interesting structures can be formed by combinations of ring and side-chain substituents in special relative orientations. As indicated above, structures (28) contain the elements of azomethine or carbonyl ylides, which are 1,3-dipoles. Charge-separated species formed by attachment of an anionic group to an azonia-nitrogen also are 1,3-dipoles pyridine 1-oxide (32) is perhaps the simplest example of these the ylide (33) is another. More complex combinations lead to 1,4-dipoles , for instance the pyrimidine derivative (34), and the cross-conjugated ylide (35). Compounds of this type have been reviewed by Ramsden (80AHCl26)l). [Pg.4]

The structural work on many other tautomeric pyrimidines is summarized in the reviews previously quoted <63AHC(1)339, 76AHC(Sl)7l). [Pg.68]

The pyrazole analogues of anthranilic acids or anthranilonitriles are a convenient source of [5.6] fused systems (for a general review see (80T2359)). Thus 5-amino-4-cyanopyrazoles (in some examples an ester or a hydrazido group replaced the cyano group) have been transformed into pyrazolo[3,4-d]pyrimidines (552) and into pyrazolo[2,3-e]diazepinones (553), and 4-amino-5-methoxycarbonylpyrazoles have been converted into pyrazolo[4,3-d]pyrimidines (554). [Pg.272]

Cyclopent-2-en-l-one, 2-hydroxy-3-methyl-synthesis, 3, 693 Cyclopentenone, 4-methoxy-formation, 1, 423 Cyclopenthiazide as diuretic, 1, 174 Cyclopent[2,3-d]isoxazol-4-one structure, 6, 975 Cyclophane conformation, 2, 115 photoelectron spectroscopy, 2, 140 [2,2]Cyclophane conformation, 2, 115 Cyclophanes nomenclature, 1, 27 Cyclophosphamide as pharmaceutical, 1, 157 reviews, 1, 496 Cyclopiloselloidin synthesis, 3, 743 Cyclopolymerization heterocycle-forming, 1, 292-293 6H-Cyclopropa[5a,6a]pyrazolo[l,5-a]pyrimidine pyrazoles from, 5, 285 Cydopropabenzopyran synthesis, 3, 700 Cyclopropachromenes synthesis, 3, 671 Cyclopropa[c]dnnolines synthesis, 7, 597 Cyclopropanation by carbenes... [Pg.591]

All these findings, as well as the similarity of UV spectra - caused dioxotetrahydrotriazine to be classified as the simplest member of the formerly known 6-substituted derivatives. These derivatives are not interesting in connection with the analogs of natural pyrimidine bases and have been reviewed elsewhere. The structure of allantoxaidine and its appurtenance to the triazine series have been recently demonstrated by its unequivocal synthesis. [Pg.194]

Tanner,from infrared spectral work, tentatively concluded that 4,6- and 4,5-dihydroxy- and 4,5,6-trihydroxy-pyrimidines exist in the monooxo forms 117, 118 (X = H), and 118 (X — OH), respectively these conclusions are supported by ultraviolet spectral data and chemical evidence. " 2,4,5,6-Tetrahydroxypyrimidine has been isolated in two forms—dialuric acid and isodialuric acid, usually formulated as 119 and 120, respectively, on the basis of rather convincing chemical evidence [for a review see reference 109(f) cf. reference 178]. Isodialuric acid is converted into dialuric acid by base as would be expected if structures 119 and 120 are correct. On the basis of its infrared spectrum, dialuric acid has been concluded to exist in the tetrahydroxy form, but the correctness of this conclusion appears very doubtful. [Pg.377]

The pyridopyrimidines discussed in this review are derived by the ortho fusion of the pyridine and pyrimidine rings through ring carbon atoms. There are four such compounds for which the nomenclature and numbering of Chemical Abstracts (1-4) will be used. Alternative names used in the literature are 1,3,8-triazanaphthalene (1), 1,3,5-tri-azanaphthalene (2), 1,3,7-triazanaphthalene or copazoline (3), and 1,3,6-triazanaphthalene (4). There has been no previous review of the... [Pg.149]

A large number of nucleophilic substitution reactions involving interconversions of pyridopyrimidines have been reported, the majority of which involve substituents in the pyrimidine ring. This subject has been reviewed previously in an earlier volume in this series which dealt with the theoretical aspects of nucleophilic re-activiti in azines, and so only a summary of the nucelophilic displacements of the substituent groups will be given here. In general, nucleophilic substitutions occur most readily at the 4-position of pyrido-... [Pg.189]

Tlie chemistry of one of the four possible classes of 1,2,4-triazolopyrim-idiiies, namely l,2,4-triazolo[l,5- ]pyrimidines, was reviewed in 1993 by G. Fischer [93AHC(57)81]. In two previous chapters published in this series we reviewed the chemistry of l,2,4-triazolo[4,3- ]pyrimidines [99AHC(73)131] and their [4,3-c] congeners [99AHC(75)243]. In this chapter we survey the fourth and last class of 1,2,4-triazolopyrimidines. Tlie literature has been inspected to issue number 26, Volume 129(1998) of Chemical Abstracts. [Pg.346]

Tire final chapter in the present volume is the third of a triad of reviews of 1,2,4-triazolopyrimidines, and it covers l,2,4-triazolo[l,5-c]pyrimidines. As with the first and second part of this series (which appeared in Volumes 73 and 75, respectively), it is authored by Professor M. A. E. Shaban and Dr. A. E. A. Morgaan (Alexandria University, Egypt). [Pg.400]

No data on tautomerism of dihydropyiimidines were available at the time of the early summary (76AHCS1), but much has been done since then. The results of tautomeric studies carried out during the period between 1976 and 1984 were reviewed comprehensively in [85AHC(38)l,pp. 63-77]. Later, Weis and vanderPlas published an excellent review on the synthesis, structure, and tautomerism of dihydropyrimidines [86H(24)1433], where the tautomeric interconversions of these compounds were discussed in detail. In a more recent review on dihydropyrimidines (94MI1), the question of tautomerism in partially hydrogenated pyrimidines was also included. [Pg.264]

The tautomeric equilibrium in variously substituted imidazo- 53 (93KGS1353) and triazolo-fused pyrimidines 54 (88KGS1489 91KGS1539 93KGS1353 93KGS1357) has been comprehensively studied by Desenko and colleagues, whose results were summarized in a special review (95KGS147). [Pg.270]

The final chapter by Istvan Hermecz (Chinoin, Ltd., Budapest, Hungary) deals with bicyclic systems containing one ring junction nitrogen and one heteroatom and their benzologs, i.e. pyrido-oxazines, pyrido-thiazines, pyrido-pyridazines, pyrido-pyrazines, pyrido-pyrimidines and their analogs. Much of this material has not been reviewed for forty years, during which time immense advances have occurred. [Pg.357]

Thiamine is present in cells as the free form 1, as the diphosphate 2, and as the diphosphate of the hydroxyethyl derivative 3 (Scheme 1) in variable ratio. The component heterocyclic moieties, 4-amino-5-hydroxymethyl-2-methylpyrimidine (4) and 4-methyl-5-(2-hydroxyethyl)thiazole (5) are also presented in Scheme 1, with the atom numbering. This numbering follows the rules of nomenclature of heterocyclic compounds for the ring atoms, and is arbitrary for the substituents. To avoid the use of acronyms, compound 5 is termed as the thiazole of thiamine or more simply the thiazole. This does not raise any ambiguity because unsubstituted thiazole is encountered in this chapter. Other thiazoles are named after the rules of heterocyclic nomenclature. Pyrimidine 4 is called pyramine, a well established name in the field. A detailed account of the present status of knowledge on the biosynthesis of thiamine diphosphate from its heterocyclic moieties can be found in a review by the authors.1 This report provides only the minimal information necessary for understanding the main part of this chapter (Scheme 2). [Pg.269]

This series in heterocychc chemistry is being introduced to collectively make available critically and comprehensively reviewed hterature scattered in various journals as papers and review articles. All sorts of heterocyclic compounds originating from synthesis, natural products, marine products, insects, etc. will be covered. Several heterocyclic compounds play a significant role in maintaining life. Blood constituents hemoglobin and purines, as well as pyrimidines, are constituents of nucleic acid (DNA and RNA). Several amino acids, carbohydrates, vitamins, alkaloids, antibiotics, etc. are also heterocyclic compounds that are essential for life. Heterocyclic compounds are widely used in clinical practice as drugs, but all applications of heterocyclic medicines can not be discussed in detail. In addition to such applications, heterocyclic compounds also find several applications in the plastics industry, in photography as sensitizers and developers, and the in dye industry as dyes, etc. [Pg.9]

A few ex vivo and in vivo studies have been published claiming an antigene (and antisense) effect of mixed purine/pyrimidine sequence PNA [48, 49, 78-80]. However, as pointed out by us in recent reviews [81, 82] these studies lack fundamental controls such as the inclusion of relevant internal standards as a control for sequence-specific non-antigene/antisense effects, thus confirmatory studies are warranted. The in vivo antigene studies from Richelsoris group [79, 83] completely lack a rational basis for the claimed effects. First of all there is no evidence that... [Pg.165]

Substituted pyrimidine N-oxides such as 891 are converted analogously into their corresponding 4-substituted 2-cyano pyrimidines 892 and 4-substituted 6-cya-no pyrimidines 893 [18]. Likewise 2,4-substituted pyrimidine N-oxides 894 afford the 2,4-substituted 6-cyano pyrimidines 895 whereas the 2,6-dimethylpyrimidine-N-oxide 896 gives the 2,6-dimethyl-4-cyanopyrimidine 897 [18, 19] (Scheme 7.6). The 4,5-disubstituted pyridine N-oxides 898 are converted into 2-cyano-4,5-disubsti-tuted pyrimidines 899 and 4,5-disubstituted-6-cyano pyrimidines 900 [19] (Scheme 7.6). Whereas with most of the 4,5-substituents in 898 the 6-cyano pyrimidines 900 are formed nearly exclusively, combination of a 4-methoxy substituent with a 5-methoxy, 5-phenyl, 5-methyl, or 5-halo substituent gives rise to the exclusive formation of the 2-cyanopyrimidines 899 [19] (Scheme 7.6). The chemistry of pyrimidine N-oxides has been reviewed [20]. In the pyrazine series, 3-aminopyrazine N-ox-ide 901 affords, with TCS 14, NaCN, and triethylamine in DMF, 3-amino-2-cyano-pyrazine 902 in 80% yield and 5% amidine 903 [21, 22] which is apparently formed by reaction of the amino group in 902 with DMF in the presence of TCS 14 [23] (Scheme 7.7) (cf. also Section 4.2.2). Other 3-substituted pyrazine N-oxides react with 18 under a variety of conditions, e.g. in the presence of ZnBr2 [22]. [Pg.152]


See other pages where Pyrimidines review is mentioned: [Pg.239]    [Pg.239]    [Pg.6]    [Pg.65]    [Pg.66]    [Pg.90]    [Pg.99]    [Pg.111]    [Pg.135]    [Pg.142]    [Pg.151]    [Pg.158]    [Pg.260]    [Pg.191]    [Pg.291]    [Pg.366]    [Pg.387]    [Pg.260]    [Pg.261]    [Pg.175]    [Pg.175]    [Pg.32]    [Pg.32]    [Pg.32]    [Pg.19]    [Pg.320]    [Pg.99]    [Pg.249]    [Pg.204]    [Pg.204]    [Pg.294]   
See also in sourсe #XX -- [ Pg.31 , Pg.32 , Pg.353 ]




SEARCH



Pyrimidine ring, opening, review

Pyrimidines, literature reviews

© 2024 chempedia.info