Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrimidine nucleotides, interconversion

The synthesis of deoxyuridine, cytidine, deoxycytidine and thymidine nucleotides from UMP (Fig. 6.13) involves three reactions CTP synthetase, ribonucleotide reductase, and thymidylate synthase (80). The first enzyme converts UTP into CTP and the second catalyzes the conversion of CDP, UDP, ADP and GDP into their respective deoxyribonucleotides. The last enzyme, thymidylate synthase, catalyzes the reductive methylation of deoxyUMP at the C-5 position giving deoxyTMP. The human enzyme has been extensively studied as it is a target enzyme in cancer chemotherapy. Besides these three enzymes, two other enzymes are involved in pyrimidine nucleotide synthesis and interconversion. DeoxyCMP deaminase converts deoxyCMP into deoxyUMP and deoxyUTP triphosphatase converts deoxyUTP into deoxyUMP. Giardia lamblia, and Trichomonas vaginalis lack both ribonucleotide reductase and thymidylate synthase and... [Pg.105]

Ribose phosphates phosphorylated derivatives of ribose. Ribose is phosphorylated in position 5 by the action of ribokinase (EC 2.7.1.15) and ATP ribose 5-phosphate is also produced in the Pentose phosphate cycle (see), and in the Calvin c cle (see) of photosynthesis. Phosphoribomutase cat yses the interconversion of ribose 5-phospbate and ribose 1-phosphate, and the cosubstrate of this reaction is ribose l,5-f>isphosphate. 5-Phosphoribosyl 1-pyrophos-phate donates a ribose 5-phosphate moiety in the de novo biosynthesis of purine and pyrimidine nucleotides (see Purine biosynthesis. Pyrimidine biosynthesis), in the Salvage pathway (see) of purine and pyrimidine utilization, in the biosynthesis of L-Histi-dine (see) and L-Tryptophan (see) and in the conversion of nicotinic acid into nicotinic acid ribotide (see Pyridine nucleotide cycle). Ribose 1-phosphate can also take part in nucleotide synthesis (see Salvage pathway). [Pg.609]

In addition to the transphosphorylation reactions discussed in Chapter 4, there are several general types of carbon and nitrogen transfer reactions which also occur in purine and pyrimidine nucleotide biosynthesis and interconversion. Among these are one-carbon and phosphoribosyl transfer reactions, amino group transfer from glutamine and aspartate, and amide syntheses. In most of these processes carbon-nitrogen bonds... [Pg.69]

In summary, the biochemical function of folate coenzymes is to transfer and use these one-carbon units in a variety of essential reactions (Figure 2), including de novo purine biosynthesis (formylation of glycinamide ribonucleotide and 5-amino-4-imidazole carboxamide ribonucleotide), pyrimidine nucleotide biosynthesis (methylation of deoxyuridylic acid to thy-midylic acid), amino-acid interconversions (the interconversion of serine to glycine, catabolism of histidine to glutamic acid, and conversion of homocysteine to methionine (which also requires vitamin B12)), and the generation and use of formate. [Pg.214]

Giardia, Trichomonas and Entamoeba. These parasitic protozoans differ from the other protozoans discussed in this chapter in that they are all incapable of interconversion between their guanine and adenine nucleotide pools. They are dependent on their host environment to supply them with both guanine and adenine. With the exception of E. histolytica, these parasites lack ribonucleotide reductase. This requires that the host also supply purine and pyrimidine deoxynucleosides. [Pg.93]

FIG. 6.13 Mammalian pyrimidine salvage and interconversion pathways. Enzymes listed in Figs 6.13-6.17 are as follows (1) deoxyCMP deaminase (2) thymidylate synthase (3) ribonucleotide reductase (4) deoxyuridine triphosphatase (5) CTP synthetase (6) nucleotide kinase (7) deoxyTMP kinase (8) nucleotide diphosphokinase (9) non-specific phosphatase or nucleotidase (10) cytidine kinase (11) pyrimidine phos-phorylase or hydrolase (12) uracil PRTase (13) cytidine deaminase (14) thymidine kinase (15) cytidine phosphotransferase (16) uridine phosphotransferase (17) thymidine phosphotransferase (18) deoxyribo-nucleotide phosphotransferase (19) cytosine PRTase. [Pg.105]

The salvage activities of T. foetus and T. vaginalis also differ (22,77). Unlike T. foetus, the level of uracil PRTase activity is very low. Uracil is converted into uridine by a uridine phosphorylase uridine is then phosphorylated by a uridine phosphotransferase to UMP (Fig. 6.15). Cytidine and thymidine also are converted into their nucleotide monophosphates by phosphotransferase activities. There is no detectable pyrimidine nucleoside kinase activity and the only significant interconversion among salvaged pyrimidines is catalyzed by cytidine deaminase to form uridine. [Pg.107]

It has been suggested by de Robichon-Szulmajster tj at uridine 5-(a-D-glucopyranosyl pyrophosphate) assumes, without strain, a folded conformation in which the pyrimidine residue is located in close proximity to the a-D-glucopyranosyl moiety and actually participates in the epimerase reaction. The ability of glycosyl nucleotides to assume such a conformation may help to account for the large number of interconversions which these compounds are able to undergo. [Pg.326]

Purines are of great interest for several reasons, but in particular, together with certain pyrimidine bases, they are constituents of DNA and RNA and consequently of fundamental importance in life processes. Additionally, as nucleosides and nucleotides (see below) they act as hormones and neurotransmitters and are present in some co-enzymes. The interconversion of mono-, di-, and triphosphate esters of nucleosides is at the heart of energy-transfer in many metabolic systems and is also involved in intracellular signalling. This central biological importance, together with medicinal chemists search for anti-tumour and anti-viral (particularly anti-AIDS) agents have resulted in a rapid expansion of purine chemistry in recent years. [Pg.461]

The chemistry and metabolism of purines, pyrimidines, and their nucleosides and nucleotides constitute one of the oldest subjects of biochemistry, beginning as it does with the identification of uric acid in 1776. It is ironic that it has taken longer to work out the pathways of the synthesis, interconversion, and catabolism of these compounds than those of many other metabolites. [Pg.313]


See other pages where Pyrimidine nucleotides, interconversion is mentioned: [Pg.325]    [Pg.223]    [Pg.225]    [Pg.243]    [Pg.50]    [Pg.437]   
See also in sourсe #XX -- [ Pg.243 ]




SEARCH



Nucleotide nucleotides Pyrimidine

Nucleotides interconversion

Pyrimidine nucleotides

Pyrimidines/pyrimidine nucleotides

© 2024 chempedia.info