Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridoxal phosphate biological role

The terminology vitamin Bg covers a number of structurally related compounds, including pyridoxal and pyridoxamine and their 5 -phosphates. Pyridoxal 5 -phosphate (PLP), in particular, acts as a coenzyme for a large number of important enzymic reactions, especially those involved in amino acid metabolism. We shall meet some of these in more detail later, e.g. transamination (see Section 15.6) and amino acid decarboxylation (see Section 15.7), but it is worth noting at this point that the biological role of PLP is absolutely dependent upon imine formation and hydrolysis. Vitamin Bg deficiency may lead to anaemia, weakness, eye, mouth, and nose lesions, and neurological changes. [Pg.246]

The interest in the mechanisms of SchifF base hydrolysis stems largely from the fact that the formation and decomposition of SchifF base linkages play an important role in a variety of enzymatic reactions, for example, carbonyl transfers involving pyridoxal phosphate, aldol condensations, /3-decarboxylations and transaminations. The mechanisms for the formation and hydrolysis of biologically important SchifF bases, and imine intermediates, have been discussed by Bruice and Benkovic (1966) and by Jencks (1969). As the consequence of a number of studies (Jencks, 1959 Cordes and Jencks, 1962, 1963 Reeves, 1962 Koehler et al., 1964), the mechanisms for the hydrolysis of comparatively simple SchifF bases are reasonably well understood. From the results of a comprehensive kinetic investigation, the mechanisms for the hydrolysis of m- and p-substituted benzylidine-l,l-dimethylethylamines in the entire pH range (see, for example, the open circles in Fig. 13) have been discussed in terms of equations (23-26) (Cordes and Jencks, 1963) ... [Pg.337]

Vitamin Be has a central role in the metabolism of amino acids in transaminase reactions (and hence the interconversion and catabolism of amino acids and the synthesis of nonessential amino acids), in decarboxylation to yield biologically active amines, and in a variety of elimination and replacement reactions. It is also the cofactor for glycogen phosphorylase and a variety of other enzymes. In addition, pyridoxal phosphate, the metabolically active vitamer, has a role in the modulation of steroid hormone action and the regulation of gene expression. [Pg.232]

The crucial role played by vitamin Bg in the nervous system and in neuroendocrinology is based on the fact that various putative neurotransmitters as well as taurine, sphingolipids, and polyamines are synthesized by pyridoxal phosphate (PLP)-dependent enzymes. There are numerous biological effects of vitamin Bg unrelated to the role of PLP as a coenzyme. PLP is an antagonist of both the voltage-mediated and the ATP-mediated calcium transport systems. PLP modulates the activities of steroid hormone receptors and transcription factors. The preventive effect of vitamin Bg on tumorigenesis might also derive from the antioxidant functions of this vitamin. [Pg.289]


See other pages where Pyridoxal phosphate biological role is mentioned: [Pg.700]    [Pg.700]    [Pg.388]    [Pg.6845]    [Pg.457]    [Pg.200]    [Pg.129]    [Pg.126]   
See also in sourсe #XX -- [ Pg.423 ]




SEARCH



Biological role

Phosphates biology

Pyridoxal phosphat

Pyridoxal phosphate

© 2024 chempedia.info