Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridines thermal

Key words supramolecular shape memory polyurethane, pyridine, thermal-responsive shape memory effect, shape memory mechanism, N,N-bis(2-hydroxyl ethyl) isonicotinamide. [Pg.128]

In contrast to the 4-hydroxy isomers, the thermally stable 5-hydroxy-THISs add to the C=C bond of cyclopropenylidenes (4. 18, 27. 28). The adducts eliminate carbonyl sulfide, and the strained bond breaks resulting in ring-expansion with formation of pyridin-4-ones. -thiones, or -imines. or 4-alkylidenedihydropvridines (20, X = 0. S.NR. or CRR ) (Scheme 19). [Pg.10]

Thermally stable POD films containing pyridine rings have potential appHcation as reverse osmosis membranes (58). [Pg.534]

Miscellaneous Reactions. Some hydantoin derivatives can serve as precursors of carbonium—immonium electrophiles (57). 5-Alkoxyhydantoins are useful precursors of dienophiles (17), which undergo Diels-Alder cycloadditions under thermal conditions or in the presence of acid catalysis (58). The pyridine ring of Streptonigrine has been constmcted on the basis of this reaction (59). [Pg.253]

A iridine traces in aqueous solution can be determined by reaction with 4-(p-nitroben25l)pyridine [1083-48-3] and potassium carbonate [584-08-7]. Quantitative determination is carried out by photometric measurement of the absorption of the blue dye formed (367,368). Alkylating reagents interfere in the determination. A iridine traces in the air can be detected discontinuously by absorption in Folin s reagent (l,2-naphthoquinone-4-sulfonate) [2066-93-5] (369,370) with subsequent chloroform extraction and hplc analysis of the red dye formed (371,372). The detection limit is ca 0.1 ppm. Nitrogen-specific thermal ionisation detectors can be used for continuous monitoring of the ambient air. [Pg.12]

Synthesis From Other Ring Systems. These syntheses are further classified based on the number of atoms in the starting ring. Ring expansion of dichlorocyclopropane carbaldimine (53), where R = H and R = ryl, on pyrolysis gives 2-arylpyridines. Thermal rearrangement to substituted pyridines occurs in the presence of tungsten(VI) oxide. In most instances the nonchlorinated product is the primary product obtained (63). [Pg.331]

Esters derived from the primary alcohols are the most stable and those derived from the tertiary alcohols are the least stable. The decomposition temperature is lower in polar solvents, eg, dimethyl sulfoxide (DMSO), with decomposition occurring at 20°C for esters derived from the tertiary alcohols (38). Esters of benzyl xanthic acid yield stilbenes on heating, and those from neopentyl alcohols thermally rearrange to the corresponding dithiol esters (39,40). The dialkyl xanthate esters catalytically rearrange to the dithiol esters with conventional Lewis acids or trifluoroacetic acid (41,42). The esters are also catalytically rearranged to the dithiolesters by pyridine Ai-oxide catalysts (43) ... [Pg.363]

Anhydro-3-hydroxy-2-phenylthiazolo[2,3-6]thiazolylium hydroxide (407) underwent ready thermal reaction with alkynic and alkenic dipolarophiles in refluxing toluene. With the former dipolarophile sulfur was lost from the intermediate 1 1 cycloadduct (408) to give the substituted 5H-thiazolo[3,2- i]pyridin-5-ones (409). With the latter, the intermediate (410) lost H2S, also forming (409). [Pg.150]

Unusual heterocyclic systems can be obtained by photodimerizations and for five-membered heterocycles with two or more heteroatoms such dimerizations need be effected on their ring-fused derivatives. Cyclobutanes are usually obtained as in the photodimerization of the s-triazolo[4,3-a]pyridine (540) to the head-to-head dimer (541). These thermally labile photodimers were formed by dimerization of the 5,6-double bond in one molecule with the 7,8-double bond in another (77T1247). Irradiation of the bis( 1,2,4-triazolo[4,3-a]pyridyl)ethane (542) at 300 nm gave the CK0ifused cyclobutane dimer (543). At 254 nm the cage-like structure (544) was formed (77T1253). [Pg.162]

Polymers with a backbone of five-membered heterocyclic rings have been developed in the new area of thermally stable materials during the last 10 years (B-80MI40408). The simple polypyrazole (741) is prepared by condensation of polydiethynylbenzene with hydrazine in pyridine with yields of 60-97%. [Pg.300]

Pyridine, 6-cyano-l,2-dihydro-thermal dimerization, 2, 370 Pyridine, 2-cyanomethyl-tautomerism, 2, 159 Pyridine, 4-cyanomethyl-tautomerism, 2, 159 Pyridine, 2-cyano-2,3,4,5-tetrahydro-metallation, 2, 387 Pyridine, 2,5-diacetyl-ipso substitution, 2, 301 Pyridine, 3,5-diacetyl-l,4-dihydro-Hantzsch synthesis, 2, 482 Pyridine, 4-dialkylamino-as acylation catalysts, 2, 34 Pyridine, 2,2-dialkyl-l,2-dihydro-... [Pg.785]

The present method for preparing aromatic dicarboxylic acids has been used to convert phthalic or isophthalic acid to tereph-thalic acid (90-95%) 2,2 -biphenyldicarboxylic acid to 4,4 -biphenyldicarboxylic acid 3,4-pyrroledicarboxylic acid to 2,5-pyr-roledicarboxylic acid and 2,3-pyridinedicarboxylic acid to 2,5-pyridinedicarboxylic acid. A closely related method for preparing aromatic dicarboxylic acids is the thermal disproportionation of the potassium salt of an aromatic monocarboxylic acid to an equimolar mixture of the corresponding aromatic hydrocarbon and the dipotassium salt of an aromatic dicarboxylic acid. The disproportionation method has been used to convert benzoic acid to terephthalic acid (90-95%) pyridine-carboxylic acids to 2,5-pyridinedicarboxylic acid (30-50%) 2-furoic acid to 2,5-furandicarboxylic acid 2-thiophenecar-boxylic acid to 2,5-thiophenedicarboxylic acid and 2-quinoline-carboxylic acid to 2,4-quinolinedicarboxylic acid. One or the other of these two methods is often the best way to make otherwise inaccessible aromatic dicarboxylic acids. The two methods were recently reviewed. ... [Pg.73]

The nitrites aie most conveniently prepared from the corresponding alcohols by treatment with nitrosyl chloride in pyridine. The crude nitrites can be precipitated by addition of water and recrystallized from appropriate solvents. However nitrites prepared from carbinols in which the adjacent carbon is substituted by halogen, free or esterified hydroxyl or a carbonyl function are very readily hydrolyzed and must be recrystallized with great care. In general the photolysis gives higher yields if purified and dried nitrites are used which do not contain acids or pyridine, although occasionally the addition of small amounts of pyridine is recommended in order to prevent hydrolysis of the nitrite. Traces of acids do in fact catalyze the thermal decomposition of secondary nitrites to equimolar amounts of alcohol and ketone. ... [Pg.255]

A large number of Brpnsted and Lewis acid catalysts have been employed in the Fischer indole synthesis. Only a few have been found to be sufficiently useful for general use. It is worth noting that some Fischer indolizations are unsuccessful simply due to the sensitivity of the reaction intermediates or products under acidic conditions. In many such cases the thermal indolization process may be of use if the reaction intermediates or products are thermally stable (vide infra). If the products (intermediates) are labile to either thermal or acidic conditions, the use of pyridine chloride in pyridine or biphasic conditions are employed. The general mechanism for the acid catalyzed reaction is believed to be facilitated by the equilibrium between the aryl-hydrazone 13 (R = FF or Lewis acid) and the ene-hydrazine tautomer 14, presumably stabilizing the latter intermediate 14 by either protonation or complex formation (i.e. Lewis acid) at the more basic nitrogen atom (i.e. the 2-nitrogen atom in the arylhydrazone) is important. [Pg.117]

Cyclic hydroxamic acids and V-hydroxyimides are sufficiently acidic to be (9-methylated with diazomethane, although caution is necessary because complex secondary reactions may occur. N-Hydroxyisatin (105) reacted with diazomethane in acetone to give the products of ring expansion and further methylation (131, R = H or CH3). The benzalphthalimidine system (132) could not be methylated satisfactorily with diazomethane, but the V-methoxy compound was readil3 obtained by alkylation with methyl iodide and potassium carbonate in acetone. In the pyridine series, 1-benzyl-oxy and l-allyloxy-2-pyridones were formed by thermal isomeriza-tion of the corresponding 2-alkyloxypyridine V-oxides at 100°. [Pg.232]

Trichloro- and dichloromethane, ether, dioxane, benzene, toluene, chlorobenzene, acetonitrile, or even pyridine itself has been employed to carry out the one-pot syntheses. Tliese solvents allow straightforward preparation of the salts. The temperature range between 0° and 20°C is usually employed and the salts formed are sufficiently soluble. In the case of slow reactions, selection of a solvent with a higher boiling point is prohtable since thermal instability of the A -(l-haloalkyl)heteroarylium halides has not been reported. Addition of water or an aqueous solution of sodium acetate does not cause a rapid decomposition of the salts so that this constitutes a useful step in the optimization of some procedures. [Pg.200]

Another approach involves utilization of the amines for addition of a fused pyridine ring to the benzothiadiazole skeleton. The Gould-Jacobs reaction of 4-amino-2,l,3-benzothiadiazole 60 with diethyl ethoxymethylenemalonate gave the substitution product, and, after thermal cyclization in diphenyl ether, afforded the... [Pg.221]

The applied Gould-Jacobs reaction is very often used to prepare angularly annelated pyridine-ring-substituted imidazoquinolines in inert media under conditions of thermal cyclocondensation, for example at temperatures above 250°C. [Pg.241]

Goldschmidt and Beer have examined the products formed during the thermal decomposition of diacyl peroxides of the type [COgMe —(CHziw—CHz—COO] 2, where n = 1 and 3, in the presence of a series of organic compounds including pyridine and acridine. The products and yields of the reaction with some aromatic and heterocyclic compounds are shown in Table VI. As expected, acridine and... [Pg.155]

Related to the above rearrangements is the ring expansion of dimethyl 2,6-dimethyl-2-[(tosyloxy)methyl]-l,2-dihydropyridine-3,5-dicarboxylate(3), in hot pyridine, to the 3/f-azepine 4.76 The bisazepine 5, which is also formed, is in thermal equilibrium with the 3/f-azepine, and in refluxing chlorobenzene reverts quickly, and quantitatively, to the monomeric azepine 4. [Pg.135]

The thermal decomposition of ethyl diazoacetate in 9//-indcno[2,l -6]pyridine (3) effects expansion of the pyridine ring to give ethyl indeno[l,2-Z>]azepine-3-carboxylate (4), the first example of the indeno[l,2-Z>]azepine system.56... [Pg.135]

Azepine-3,6-dicarboxvlates, e. g. 14, formed by solvolysis of 4-(chloromethyl)-l, 4-dihydro-pyridine-3,5-dicarboxylates(see Section 3.1.1.4.1.5.), readily undergo thermal and base-induced isomerizations to 3//-azepines, e.g. 15.29... [Pg.174]

Azepines, although more stable than 1/f-azepines. readily undergo ring contraction to pyridine derivatives under acidic, basic, thermal, and photolytic conditions. [Pg.184]

The 14e compound MTO readily forms coordination complexes of the type MTO-L and MTO-L2 with anionic and uncharged Lewis bases [96], These yellow adducts are typically five- or six-coordinate complexes, and the Re-L system is highly labile. Apart from their fast hydrolysis in wet solvents, MTO-L adducts are much less thermally stable then MTO itself. The pyridine adduct of MTO, for instance, decomposes even at room temperature. In solution, methyltrioxorhenium displays high stability in acidic aqueous media, although its decomposition is strongly accelerated at increased hydroxide concentrations [97, 98], Thus, under basic aqueous conditions MTO decomposes as shown in Equation (4). [Pg.209]


See other pages where Pyridines thermal is mentioned: [Pg.328]    [Pg.322]    [Pg.328]    [Pg.322]    [Pg.55]    [Pg.439]    [Pg.494]    [Pg.142]    [Pg.38]    [Pg.223]    [Pg.529]    [Pg.44]    [Pg.67]    [Pg.787]    [Pg.789]    [Pg.45]    [Pg.243]    [Pg.278]    [Pg.131]    [Pg.131]    [Pg.144]    [Pg.193]    [Pg.133]    [Pg.49]    [Pg.1365]    [Pg.35]    [Pg.16]    [Pg.733]    [Pg.62]   


SEARCH



Pyridine containing polymers thermal

Pyridine polymers thermal properties

© 2024 chempedia.info