Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Purines detection

The pur pose of work is to develop the technique of separ ation of purine bases (caffeine, theophylline, theobromine) and the technique of detection of purine bases in biological fluid by TLC using micellar mobile phases containing of different surfactants. [Pg.350]

Optical detection of magnetic resonance (ODMR) was attempted for measurements of the pH effects on the triplet state of purine to investigate the protonation site of purine at low temperatures (78JA7131). The ODMR spectrum did not show the presence of more than one triplet state at liquid helium temperatures. Since the protonated tautomers 1H,9H (3a) and H,1H (3b) have similar bond structures, their triplets should have similar zero-field parameters and are thus not easy to distinguish by ODMR. [Pg.54]

The ZwKKER reaction involving Co salts is frequently used for the detection of barbituric acid derivatives [31-35], but some purine, pyridine and piperidine derivatives and heterocyclic sulfonamides also yield colored derivatives. The Zwkker reaction is particularly sensitive when it is possible to form a tetrahedral complex [Co(Barb)2 Xj] (X = donor ligand, e.g. amine) [4]. [Pg.67]

Care must be exercised in the choice of acid employed in chloramine T — mineral acid reagent since the detection sensitivity and also the color of the fluorescences produced depend to a significant extent on the choice of acid. This is illustrated for the purine derivatives caffeine, theobromine and theophylline in Figure 1 and Table 1. [Pg.93]

Fig. 1 Comparison of the detection sensitivity after derivatization of three purine derivatives with chloramine T - sulfuric acid (A) and chloramine T - hydrochloric acid (B). Measurement X. (. = 365 nm, A.(, = 440 nm (monochromatic filter M 440) 1 = theophylline, 2 = theobromine, 3 = caffeine. Fig. 1 Comparison of the detection sensitivity after derivatization of three purine derivatives with chloramine T - sulfuric acid (A) and chloramine T - hydrochloric acid (B). Measurement X. (. = 365 nm, A.(, = 440 nm (monochromatic filter M 440) 1 = theophylline, 2 = theobromine, 3 = caffeine.
The detection limits for purine derivatives are 120-400 ng and for antibiotics 50 ng substance per chromatogram zone [4]. [Pg.157]

Note Uranyl nitrate can be used instead of uranyl acetate [1]. The detection limits for purines are 10 ng substance per chromatogram zone. [Pg.227]

Seasonal variations in the metabolic fate of adenine nucleotides prelabelled with [8—1-4C] adenine were examined in leaf disks prepared at 1-month intervals, over the course of 1 year, from the shoots of tea plants (Camellia sinensis L. cv. Yabukita) which were growing under natural field conditions by Fujimori et al.33 Incorporation of radioactivity into nucleic acids and catabolites of purine nucleotides was found throughout the experimental period, but incorporation into theobromine and caffeine was found only in the young leaves harvested from April to June. Methy-lation of xanthosine, 7-methylxanthine, and theobromine was catalyzed by gel-filtered leaf extracts from young shoots (April to June), but the reactions could not be detected in extracts from leaves in which no synthesis of caffeine was observed in vivo. By contrast, the activity of 5-phosphoribosyl-1-pyrophosphate synthetase was still found in leaves harvested in July and August. [Pg.20]

Foods derived from cocoa beans have been consumed by humans since at least 460 to 480 AD. The source of cocoa beans, the species Theobroma, contains a variety of biologically active components. These include the purine alkaloids theobromine, caffeine, and theophylline. Structurally, they are methylated xanthines and, thus, are often referred to as methylxanthines. Theobromine (3, 7-dimethylxanthine) is the predominant purine alkaloid in cocoa and chocolate. Caffeine (1, 3, 7-trimethylxanthine), the major purine alkaloid found in coffee and tea, is found in cocoa and chocolate at about one eighth the concentration of theobromine. Only trace amounts of theophylline (1, 3-dimethylxanthine) are detected in cocoa and chocolate products. [Pg.171]

Until the 1980s, yields of nucleobases obtained in prebiotic syntheses were very small. Thus, some scientists assumed that in earlier phases of molecular evolution, the nucleic acids used other bases in their information-transmitting substances. Piccirilli et al. (1990) suggested isocytosine and diaminopyridine, while Wachtershauser (1988) suggested that the first genetic material possibly consisted only of purines. However, pyrimidine (about a fifth of the total amount of purines present) had been detected in the Murchison meteorite, so that an effective pyrimidine synthesis should have been possible. [Pg.93]

Of the purine nucleosides, dATP may be derivatized at its N-6 position using a long linker arm terminating in a detectable group without losing the ability to be enzymatically incorporated into DNA probes. By contrast, if modification is done at the C-8 position of purine bases, DNA polymerase cannot by used to add the labeled monomer to an existing strand. C-8 derivatives, however, can be added at the 3 terminal using terminal transferase enzyme. [Pg.971]

Figure 27.1 Three common nucleoside triphosphate derivatives that can be incorporated into oligonucleotides by enzymatic means. The first two are biotin derivatives of pyrimidine and purine bases, respectively, that can be added to an existing DNA strand using either polymerase or terminal transferase enzymes. Modification of DNA with these nucleosides results in a probe detectable with labeled avidin or streptavidin conjugates. The third nucleoside triphosphate derivative contains an amine group that can be added to DNA using terminal transferase. The modified oligonucleotide then can be labeled with amine-reactive bioconjugation reagents to create a detectable probe. Figure 27.1 Three common nucleoside triphosphate derivatives that can be incorporated into oligonucleotides by enzymatic means. The first two are biotin derivatives of pyrimidine and purine bases, respectively, that can be added to an existing DNA strand using either polymerase or terminal transferase enzymes. Modification of DNA with these nucleosides results in a probe detectable with labeled avidin or streptavidin conjugates. The third nucleoside triphosphate derivative contains an amine group that can be added to DNA using terminal transferase. The modified oligonucleotide then can be labeled with amine-reactive bioconjugation reagents to create a detectable probe.
The chemistry, metabolism, and clinical importance of folic acid have been the subject of many excellent reviews (A7, Gil, H14, H20, Rl). Folic acid deficiency leads to a macrocytic anemia and leucopenia. These symptoms are due to inadequate synthesis of nucleic acid. The synthesis of purine bases and of thymine, required for nucleic acid synthesis, is impaired in folic acid deficiency. Detection of folic acid activity in biologic fluids and tissues is of the utmost importance it distinguishes between the various anemias, e.g., those due to vitamin Bi2 or folic acid deficiency. Because morphology of the abnormal red cell does not help in diagnosing vitamin deficiency, one must rely on assay methods for differential diagnosis. Treatment of pernicious anemia with folic acid has led to subacute combined degeneration of the spinal cord despite... [Pg.217]


See other pages where Purines detection is mentioned: [Pg.95]    [Pg.830]    [Pg.351]    [Pg.95]    [Pg.830]    [Pg.351]    [Pg.282]    [Pg.53]    [Pg.912]    [Pg.503]    [Pg.36]    [Pg.530]    [Pg.24]    [Pg.302]    [Pg.319]    [Pg.347]    [Pg.18]    [Pg.19]    [Pg.38]    [Pg.5]    [Pg.69]    [Pg.294]    [Pg.27]    [Pg.106]    [Pg.157]    [Pg.128]    [Pg.74]    [Pg.147]    [Pg.209]    [Pg.539]    [Pg.572]    [Pg.590]    [Pg.388]    [Pg.193]    [Pg.432]   
See also in sourсe #XX -- [ Pg.549 ]




SEARCH



© 2024 chempedia.info