Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pteridine reactions

Apart from the nuclear bromination observed (Section 2.15.13.1) in the attempted radical bromination of a side-chain methyl group leading to (396), which may or may not have involved radical intermediates, the only other reaction of interest in this section is a light-induced reduction of certain hydroxypyrido[3,4-f)]pyrazines or their 0x0 tautomers analogous to that well-known in the pteridine field (63JCS5156). Related one-electron reduction products of laser photolysis experiments with 1 -deazaflavins have been described (79MI21502). [Pg.254]

The only reaction of this type noted involved the reaction of pteridines, e.g. (415), with malonodinitrile (or cyanoacetamide), via ring opening to (416), with final [6 + 0 ( )] cyclization to give the 6-amino-7-nitrile (amide) (417) (73JCS(P1)1615, 73JCS(P1)1974). [Pg.255]

By far the most important reaction for the synthesis of pyridopyrazines is the reaction of diaminopyridines with two-carbon fragments, the pyridopyrazine equivalent of the well-known Isay reaction in the pteridine field. [Pg.257]

Studies on covalent hydration of N-heterocycles (67AG(E)919,76AHC(20)117) have revealed the diagnostic value of alkyl substituents in structural assignments due to their steric hindrance effects in addition reactions. C-Methyl substituents are therefore also considered as molecular probes to solve fine-structural problems in the pteridine field. The derivatives... [Pg.265]

There is no easy understanding of the spectral properties of these compounds in general, which may or may not have a built-in chromophoric system responsible for a long-wavelength absorption like 7,8-dihydropteridin-4-one or a blue-shifted excitation like its 5,6-dihydro isomer. More important than the simple dihydropteridine model substances are the dihydropterins and dihydrolumazines, which are naturally occurring pteridine derivatives and reactive intermediates in redox reactions. [Pg.279]

In contrast to electrophilic reagents, the highly -tt-deficient character of the pteridine nucleus is responsible for its vulnerability towards nucleophilic attack by a wide variety of reagents. The direct nucleophilic substitution of pteridine itself in a Chichibabin-type reaction with sodamide in diethylaniline, however, was unsuccessful (51JCS474). Pteridin-6-one, on the other hand, yielded pteridine-6,7-dione under the same conditions, via a still unknown reaction mechanism. [Pg.286]

With pteridine (1) the covalent hydration is a complex matter since the general acid-base catalyzed reaction provides a good example of a kinetically controlled addition to the... [Pg.286]

The action of sulfur nucleophiles like sodium bisulfite and thiophenols causes even pteridines that are unreactive towards water or alcohols to undergo covalent addition reactions. Thus, pteridin-7-one smoothly adds the named S-nucleophiles in a 1 1 ratio to C-6 (65JCS6930). Similarly, pteridin-4-one (73) yields adducts (74) in a 2 1 ratio at C-6 and C-7 exclusively (equation 14), as do 4-aminopteridine and lumazine with sodium bisulfite. Xanthopterin forms a 7,8-adduct and 7,8-dihydropterin can easily be converted to sodium 5,6,7,8-tetrahydropterin-6-sulfonate (66JCS(C)285), which leads to pterin-6-sulfonic acid on oxidation (59HCA1854). [Pg.287]

The use of carbon nucleophiles in Michael-type addition reactions with pteridine and its derivatives leads to a quite complicated and divergent pattern. These reactions are strongly dependent on the nature of the carbon nucleophile and can be divided into various categories. [Pg.288]

An interesting method for the substitution of a hydrogen atom in rr-electron deficient heterocycles was reported some years ago, in the possibility of homolytic aromatic displacement (74AHC(16)123). The nucleophilic character of radicals and the important role of polar factors in this type of substitution are the essentials for a successful reaction with six-membered nitrogen heterocycles in general. No paper has yet been published describing homolytic substitution reactions of pteridines with nucleophilic radicals such as alkyl, carbamoyl, a-oxyalkyl and a-A-alkyl radicals or with amino radical cations. [Pg.290]

As a result of the 7r-deficiency of the pteridine nucleus, alkyl pteridines are activated in the a-positions. The common reactions based on C—H acidity are found with a wide variety of compounds. Bromination of 6- and 7-methyl groups leads to mono- and di-substitution selective formation of the monobromomethyl derivatives has not yet been achieved satisfactorily. 6-Methylisoxanthopterin is claimed to give the 6-bromomethyl derivative with bromine in acetic and sulfuric acids at 100 °C for 2 min (50ZN(B)132) and with 1,7-dimethyl-lumazine a 90% yield of the 7-bromomethyl derivative (60CB2668) is obtained after 4h... [Pg.301]

Among the substitution reactions involving the ring nitrogen atoms of the pteridine nucleus, alkylations of amide functions are preeminent. Under base-catalyzed conditions it is usually the nitrogen atom adjacent to the carbonyl function which is substituted... [Pg.304]

Another approach uses the reaction of 6-chloro-5-nitropyrimidines with a-phenyl-substituted amidines followed by base-catalyzed cyclization to pteridine 5-oxides, which can be reduced further by sodium dithionite to the heteroaromatic analogues (equation 97) (79JOC1700). Acylation of 6-amino-5-nitropyrimidines with cyanoacetyl chloride yields 6-(2-cyanoacetamino)-5-nitropyrimidines (276), which can be cyclized by base to 5-hydroxypteridine-6,7-diones (27S) or 6-cyano-7-oxo-7,8-dihydropteridine 5-oxides (277), precursors of pteridine-6,7-diones (278 equation 98) (75CC819). [Pg.316]


See other pages where Pteridine reactions is mentioned: [Pg.213]    [Pg.258]    [Pg.260]    [Pg.265]    [Pg.266]    [Pg.281]    [Pg.286]    [Pg.287]    [Pg.287]    [Pg.288]    [Pg.288]    [Pg.291]    [Pg.292]    [Pg.294]    [Pg.294]    [Pg.294]    [Pg.295]    [Pg.296]    [Pg.296]    [Pg.297]    [Pg.297]    [Pg.297]    [Pg.298]    [Pg.302]    [Pg.303]    [Pg.304]    [Pg.304]    [Pg.304]    [Pg.305]    [Pg.308]    [Pg.309]    [Pg.310]    [Pg.311]    [Pg.311]    [Pg.313]    [Pg.314]    [Pg.314]   
See also in sourсe #XX -- [ Pg.425 ]




SEARCH



Pteridin

Pteridine

Pteridine reaction with ammonia

Pteridine-4-carboxylic ester, reaction

Pteridines

Pteridines Addition reactions

© 2024 chempedia.info