Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substrate proximity

While the silicatein-mediated catalysis of silicon alkoxide condensation is interesting and potentially useful, it is unclear whether this reaction plays a significant role in biosilicification. This is largely beeause the identity of the proximate substrate for the biological synthesis remains unknown. Although it has been shown that the recently identified silicon transporter from diatoms mediates the uptake of dissolved silicic acid fi om the external environment [4], it is not yet clear whether this is the species that is transported into the SDV for condensation, or if that silicic acid is first conjugated or otherwise modified prior to condensation (cf. [13-15,22]). [Pg.13]

Inspired by the many hydrolytically-active metallo enzymes encountered in nature, extensive studies have been performed on so-called metallo micelles. These investigations usually focus on mixed micelles of a common surfactant together with a special chelating surfactant that exhibits a high affinity for transition-metal ions. These aggregates can have remarkable catalytic effects on the hydrolysis of activated carboxylic acid esters, phosphate esters and amides. In these reactions the exact role of the metal ion is not clear and may vary from one system to another. However, there are strong indications that the major function of the metal ion is the coordination of hydroxide anion in the Stem region of the micelle where it is in the proximity of the micelle-bound substrate. The first report of catalysis of a hydrolysis reaction by me tall omi cell es stems from 1978. In the years that... [Pg.138]

P-Lactam antibiotics exert their antibacterial effects via acylation of a serine residue at the active site of the bacterial transpeptidases. Critical to this mechanism of action is a reactive P-lactam ring having a proximate anionic charge that is necessary for positioning the ring within the substrate binding cleft (24). [Pg.63]

Affinity Labels. Active site-directed, irreversible inhibitors or affinity labels are usually substrate analogues that contain a reactive electrophilic functional group. In the first step, they bind to the active site of the target enzyme in a reversible fashion. Subsequentiy, an active site nucleophile in close proximity reacts with the electrophilic group on the substrate to form a covalent bond between the enzyme and the inhibitor, typically via S 2 alkylation or acylation. Affinity labels do not require activation by the catalysis of the enzyme, as in the case of a mechanism-based inhibitor. [Pg.323]

Weak boundary layer. WBL theory proposes that a cohesively weak region is present at the adhesive-substrate interface, which leads to poor adhesion. This layer can prevent the formation of adhesive bonds, or the adhesive can preferentially form bonds with the boundary layer rather that the surface it was intended for. Typically, the locus of failure is interfacial or in close proximity to the silicone-substrate interface. One of the most common causes of a WBL being formed is the presence of contaminants on the surface of the substrate. The formation of a WBL can also result from migration of additives from the bulk of the substrate, to the silicone-substrate interface. Alternatively, molecular... [Pg.697]

Relationships between stereocenters vary between two extremes. On the one hand, stereocenters may interact strongly in a spatial sense if they are directly joined, proximate to one another, or part of a compact rigid-ring structure. On the other hand, two stereocenters which are remote from one another and/or flexibly connected may be so independent that one cannot be used to provide substrate spatial control for the other. Nonetheless, this latter type of stereorelationship may still be clearable if the target molecule can be disconnected to divide the two stereocenters between two precursors or if an appropriate enantioselective transform is available. [Pg.54]

The proximity effect. This is the simple idea that in an intramolecular reaction the substrate function may be exposed to a larger local concentration of the reagent than in an intermolecular reaction, because the two functions are covalently constrained to occupy adjacent space. This effect has been called the approximation or propinquity effect. The proximity effect certainly seems physically reasonable and is likely to make some contribution to intramolecular reactivity, but it cannot be a major contributor when EM is large, because EM is itself a measure of a presumed local concentration, and the observed large EM values are physically impossible concentrations. The magnitude of rate enhancement achievable by prox-... [Pg.365]

Until recently, the catalytic role of Asp ° in trypsin and the other serine proteases had been surmised on the basis of its proximity to His in structures obtained from X-ray diffraction studies, but it had never been demonstrated with certainty in physical or chemical studies. As can be seen in Figure 16.17, Asp ° is buried at the active site and is normally inaccessible to chemical modifying reagents. In 1987, however, Charles Craik, William Rutter, and their colleagues used site-directed mutagenesis (see Chapter 13) to prepare a mutant trypsin with an asparagine in place of Asp °. This mutant trypsin possessed a hydrolytic activity with ester substrates only 1/10,000 that of native trypsin, demonstrating that Asp ° is indeed essential for catalysis and that its ability to immobilize and orient His is crucial to the function of the catalytic triad. [Pg.517]

The diazo function in compound 4 can be regarded as a latent carbene. Transition metal catalyzed decomposition of a diazo keto ester, such as 4, could conceivably lead to the formation of an electron-deficient carbene (see intermediate 3) which could then insert into the proximal N-H bond. If successful, this attractive transition metal induced ring closure would accomplish the formation of the targeted carbapenem bicyclic nucleus. Support for this idea came from a model study12 in which the Merck group found that rhodi-um(n) acetate is particularly well suited as a catalyst for the carbe-noid-mediated cyclization of a diazo azetidinone closely related to 4. Indeed, when a solution of intermediate 4 in either benzene or toluene is heated to 80 °C in the presence of a catalytic amount of rhodium(n) acetate (substrate catalyst, ca. 1000 1), the processes... [Pg.254]

Base-induced rearrangement of bicyclo[2.2.2]octane oxide 67 gives predominantly bicyclo[2.2.2]octanone 68 (Scheme 5.15), which once again indicates that close proximity between the carbenoid center and the C-H bond into which it may insert is important if such an insertion is to occur [30]. In comparison, the sense of product distribution is reversed for the related substrate bicyclo[2.2.2]octadiene oxide 70 on treatment with LDA [15, 22], alcohol 72 being the favored product. [Pg.153]


See other pages where Substrate proximity is mentioned: [Pg.160]    [Pg.248]    [Pg.647]    [Pg.648]    [Pg.210]    [Pg.248]    [Pg.127]    [Pg.114]    [Pg.160]    [Pg.248]    [Pg.647]    [Pg.648]    [Pg.210]    [Pg.248]    [Pg.127]    [Pg.114]    [Pg.2593]    [Pg.311]    [Pg.126]    [Pg.116]    [Pg.136]    [Pg.253]    [Pg.275]    [Pg.321]    [Pg.322]    [Pg.163]    [Pg.167]    [Pg.176]    [Pg.16]    [Pg.532]    [Pg.366]    [Pg.368]    [Pg.512]    [Pg.154]    [Pg.105]    [Pg.80]    [Pg.82]    [Pg.403]    [Pg.187]    [Pg.191]    [Pg.294]    [Pg.303]    [Pg.403]    [Pg.759]    [Pg.362]    [Pg.1]    [Pg.2]    [Pg.968]   
See also in sourсe #XX -- [ Pg.90 , Pg.100 ]




SEARCH



Proximal

Proximates

Proximation

Proximity

© 2024 chempedia.info