Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protons relationship

Counterpropagation neural networks (CFG NN) were then used to establish relationships between protons and their H NMR chemical shifts. A detailed description of this method is given in the Tools Section 10,2.4.2,... [Pg.524]

A combination of physicochemical, topological, and geometric information is used to encode the environment of a proton, The geometric information is based on (local) proton radial distribution function (RDF) descriptors and characterizes the 3D environment of the proton. Counterpropagation neural networks established the relationship between protons and their h NMR chemical shifts (for details of neural networks, see Section 9,5). Four different types of protons were... [Pg.524]

The relative basicities of aromatic hydrocarbons, as represented by the equilibrium constants for their protonation in mixtures of hydrogen fluoride and boron trifluoride, have been measured. The effects of substituents upon these basicities resemble their effects upon the rates of electrophilic substitutions a linear relationship exists between the logarithms of the relative basicities and the logarithms of the relative rate constants for various substitutions, such as chlorination and... [Pg.113]

Streitwieser pointed out that the eorrelation whieh exists between relative rates of reaetion in deuterodeprotonation, nitration, and ehlorination, and equilibrium eonstants for protonation in hydrofluorie aeid amongst polynuelear hydroearbons (ef. 6.2.3) constitutes a relationship of the Hammett type. The standard reaetion is here the protonation equilibrium (for whieh p is unity by definition). For eon-venience he seleeted the i-position of naphthalene, rather than a position in benzene as the referenee position (for whieh o is zero by definition), and by this means was able to evaluate /) -values for the substitutions mentioned, and cr -values for positions in a number of hydroearbons. The p -values (for protonation equilibria, i for deuterodeprotonation, 0-47 for nitration, 0-26 and for ehlorination, 0-64) are taken to indieate how elosely the transition states of these reaetions resemble a cr-eomplex. [Pg.138]

FIGURE 5 11 Confer mations of as and trans 4 tert butylcyclohexyl bromide and their relationship to the preference for an anti copla nar arrangement of proton and leaving group... [Pg.217]

Use curved arrows to show the bonding changes in the reaction of CIS 4 tert butylcyclohexyl bromide with potassium tert butoxide Be sure your drawing correctly represents the spatial relationship between the leaving group and the proton that is lost... [Pg.217]

Section 5 16 The preceding equation shows the proton H and the halogen X m the anti coplanar relationship that is required for elimination by the E2 mechanism... [Pg.223]

A very important characteristic of spin-spin splitting is that protons that have the same chemical shift do not split each other s signal Ethane for example shows only a single sharp peak m its NMR spectrum Even though there is a vicinal relationship between the protons of one methyl group and those of the other they do not split each other s signal because they are equivalent... [Pg.537]

One kind of 2D NMR is called COSY, which stands for correlated spectroscopy With a COSY spectrum you can determine by inspection which signals correspond to spin coupled protons Identifying coupling relationships is a valuable aid to establishing a molecule s connectivity... [Pg.556]

Saccharin was discovered at Johns Hopkins Uni versity in 1879 in the course of research on coal tar derivatives and is the oldest artificial sweetener In spite of Its name which comes from the Latin word for sugar saccharin bears no structural relationship to any sugar Nor is saccharin itself very soluble in wa ter The proton bonded to nitrogen however is fairly acidic and saccharin is normally marketed as its water soluble sodium or calcium salt Its earliest applications were not in weight control but as a... [Pg.1051]

Quantitative Calculations In acid-base titrimetry the quantitative relationship between the analyte and the titrant is determined by the stoichiometry of the relevant reactions. As outlined in Section 2C, stoichiometric calculations may be simplified by focusing on appropriate conservation principles. In an acid-base reaction the number of protons transferred between the acid and base is conserved thus... [Pg.304]

This last m/z value is easy to measure accurately, and, if its relationship to the true mass is known (n = 10), then the true mass can be measured very accurately. The multicharged ions have typical m/z values of <3000 Da, which means that conventional quadrupole or magnetic-sector analyzers can be used for mass measurement. Actually, the spectrum consists of a series of multicharged protonated molecular ions [M + nWY for each component present in the sample. Each ion in the series differs by plus and minus one charge from adjacent ions ([M + uH] + n -an integer series for example, 1, 2, 3,. .., etc.). Mathematical transformation of the spectrum produces a true molecular mass profile of the sample (Figure 40.5). [Pg.291]

More recent research provides reversible oxidation-reduction potential data (17). These allow the derivation of better stmcture-activity relationships in both photographic sensitization and other systems where electron-transfer sensitizers are important (see Dyes, sensitizing). Data for an extensive series of cyanine dyes are pubflshed, as obtained by second harmonic a-c voltammetry (17). A recent "quantitative stmcture-activity relationship" (QSAR) (34) shows that Brooker deviations for the heterocycHc nuclei (discussed above) can provide estimates of the oxidation potentials within 0.05 V. An oxidation potential plus a dye s absorption energy provide reduction potential estimates. Different regression equations were used for dyes with one-, three-, five-methine carbons in the chromophore. Also noted in Ref. 34 are previous correlations relating Brooker deviations for many heterocycHc nuclei to the piC (for protonation/decolorization) for carbocyanine dyes the piC is thus inversely related to oxidation potential values. [Pg.396]

Another principal difficulty is that the precise effect of local dynamics on the NOE intensity cannot be determined from the data. The dynamic correction factor [85] describes the ratio of the effects of distance and angular fluctuations. Theoretical studies based on NOE intensities extracted from molecular dynamics trajectories [86,87] are helpful to understand the detailed relationship between NMR parameters and local dynamics and may lead to structure-dependent corrections. In an implicit way, an estimate of the dynamic correction factor has been used in an ensemble relaxation matrix refinement by including order parameters for proton-proton vectors derived from molecular dynamics calculations [72]. One remaining challenge is to incorporate data describing the local dynamics of the molecule directly into the refinement, in such a way that an order parameter calculated from the calculated ensemble is similar to the measured order parameter. [Pg.270]

Substituent effects (electronegativity, configuration) influence these coupling constants in four-, five- and seven-membered ring systems, sometimes reversing the cis-tmns relationship so that other NMR methods of structure elucidation, e.g. NOE difference spectra (see Section 2.3.5), are needed to provide conclusive results. However, the coupling constants of vicinal protons in cyclohexane and its heterocyclic analogues (pyranoses, piperidines) and also in alkenes (Table 2.10) are particularly informative. [Pg.44]

Neighbouring diaxial protons of cyclohexane can be clearly identified by their large coupling constants 11-13 Hz, Table 2.10) which contrast with those of protons in diequatorial or axial-equatorial configurations ( Jee 2-4 Hz). Similar relationships hold for pyranosides as oxy-... [Pg.44]

HH multiplicities and coupling constants HHCOSY or TOCSY gemma/, vidml and other relationships between protons... [Pg.68]

CH or HC COSY (HMQC) CH bonds CH COLOC or HC HMBC. Jch and Jch relationships between carbon and protons... [Pg.68]

The relative configurations of vicinal protons follow from the characteristic values of their coupling constants. Thus 16.1 Hz confirms the trans relationship of the protons on C-8 and C-9, 10.8 Hz confirms the cis relationship of the protons on C-6 and C-1. The 2.0 Hz coupling is common to the oxirane protons at = 3.00 and i.27 this value fixes the trans relationship of the protons at C-4 and C-5 following a comparison with the corresponding coupling in the methyloxirane (2.6 Hz). The anti relationship of the protons A-H and h-H can be recognised from their 8.7 Hz coup-... [Pg.187]

The relative eonfiguration C is derived from the eoupling eonstants of the H NMR speetrum the 11.9 Hz coupling of the phenyl-C//proton [Sh = 3.36) proves its antiperiplanar relationship to the... [Pg.188]


See other pages where Protons relationship is mentioned: [Pg.99]    [Pg.123]    [Pg.163]    [Pg.20]    [Pg.99]    [Pg.123]    [Pg.163]    [Pg.20]    [Pg.193]    [Pg.217]    [Pg.939]    [Pg.347]    [Pg.257]    [Pg.389]    [Pg.11]    [Pg.7]    [Pg.305]    [Pg.224]    [Pg.278]    [Pg.19]    [Pg.21]    [Pg.24]    [Pg.30]    [Pg.30]    [Pg.30]    [Pg.40]    [Pg.44]    [Pg.44]    [Pg.47]    [Pg.51]    [Pg.187]    [Pg.188]    [Pg.210]    [Pg.230]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Adiabatic Proton Transfer Free Energy Relationship (FER)

Carbon-proton coupling constants relationship with structure

HH COSY (geminal, vicinal, -relationships of protons)

Proton exchange membrane relationships

Proton transfer, linear free energy relationship

Relationship proton affinity difference

Theoretical Simulations of Free Energy Relationships in Proton Transfer

© 2024 chempedia.info