Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protons metabolism

Two- and three-bond CH eonneetivities of the methyl protons deteeted in the CH COLOC diagram identify the partial structures E and F. Only one bond from 5c = 72.6 to 5c = 44.5 could not be directly identified because of the absenee of the eorresponding eross signal (<5// =1.17 with 5c = 44.5). Nevertheless, partial strueture E is reasonable, assuming the six-membered ring to be retained during metabolism. [Pg.221]

As we have seen, the metabolic energy from oxidation of food materials—sugars, fats, and amino acids—is funneled into formation of reduced coenzymes (NADH) and reduced flavoproteins ([FADHg]). The electron transport chain reoxidizes the coenzymes, and channels the free energy obtained from these reactions into the synthesis of ATP. This reoxidation process involves the removal of both protons and electrons from the coenzymes. Electrons move from NADH and [FADHg] to molecular oxygen, Og, which is the terminal acceptor of electrons in the chain. The reoxidation of NADH,... [Pg.679]

One of the steps in fat metabolism is the hydration of crotonate to yield 3-hydroxybutvrate. The reaction occurs by addition of —OH to the Si face at CM, followed by protonation at C2, also from the Si face. Draw the product of the reaction, showing the stereochemistry of each step. [Pg.329]

The literature in this field is confusing because of a somewhat haphazard method of nomenclature that has arisen historically. This is compounded by some mistakes in structure determination, reported in early papers, and which are occasionally quoted. The first part of this chapter deals with nomenclature and with a brief overview of early work. Subsequent sections deal with the formation and metabolism of di-D-fructose dianhydrides by micro-organisms, and the formation of dihexulose dianhydrides by protonic and thermal activation. In relation to the latter topic, recent conclusions regarding the nature of sucrose caramels are covered. Other sections deal with the effects of di-D-fructose dianhydrides upon the industrial production of sucrose and fructose, and the possible ways in which these compounds might be exploited. An overview of the topic of conformational energies and implications for product distributions is also presented. [Pg.208]

Complexes III and IV have Fe-porphyrin prosthetic groups (hemes), complex IV also contains copper atoms which are involved in electron transport. Complexes I, III, and IV use the energy of electron transport to pump protons out of the matrix so as to maintain a pH gradient and an electrical potential difference across the inner membrane required for ATP synthesis (see below and Appendix 3). It is important to remember that all dehydrogenations of metabolic substrates remove two protons as well as two electrons and that a corresponding number of protons are consumed in the final reduction of dioxygen (Figures 5, 6). [Pg.124]

Hafher, R.P., Brown, G.C.. Brand, M.D. (1990). Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and proton motive force in isolated mitochondria using the top-down approach of metabolic control theory. Eur. J. Biochem. 188,313-319. [Pg.152]

The major functions of the red blood ceil are relatively simple, consisting of dehvering oxygen to the tissues and of helping in the disposal of carbon dioxide and protons formed by tissue metabolism. Thus, it has a much simpler structure than most human cells, being essentially composed of a membrane surrounding a solution of hemoglobin (this protein forms about 95% of the intracellular protein of the red cell). There are no... [Pg.609]

Figure 2.17 Application of the reverse DEPT pulse sequence to monitor C-labeled glucose by mouse liver-cell extract. (A) Normal FT spectrum. (B) Reverse DEPT spectrum showing the a- and )3-anomeric proton resonances. (C) Two different CH2 proton resonances, a and b, appear after 1.5 h of metabolism. (D) Edited H spectrum confirming that the CH2 resonances arise from metabolic products. (Reprinted from J. Magn. Resonance 56, Brooks et al., 521, copyright 1984, Academic Press.)... Figure 2.17 Application of the reverse DEPT pulse sequence to monitor C-labeled glucose by mouse liver-cell extract. (A) Normal FT spectrum. (B) Reverse DEPT spectrum showing the a- and )3-anomeric proton resonances. (C) Two different CH2 proton resonances, a and b, appear after 1.5 h of metabolism. (D) Edited H spectrum confirming that the CH2 resonances arise from metabolic products. (Reprinted from J. Magn. Resonance 56, Brooks et al., 521, copyright 1984, Academic Press.)...
Ubiquinone, known also as coenzyme Q, plays a crucial role as a respiratory chain electron carrier transport in inner mitochondrial membranes. It exerts this function through its reversible reduction to semiquinone or to fully hydrogenated ubiquinol, accepting two protons and two electrons. Because it is a small lipophilic molecule, it is freely diffusable within the inner mitochondrial membrane. Ubiquinones also act as important lipophilic endogenous antioxidants and have other functions of great importance for cellular metabolism. ... [Pg.106]

Aerobic living features metabolize sugars and fatty acids to carbon dioxide. Accordingly, there are some kinds of decarboxylation reactions. TPP-mediated decarboxylation of pyruvic acid to acetaldehyde is one of the most important steps of the metabolism of sugar compounds (Fig. 1). When the intermediate reacts with lipoic acid instead of a proton, pyruvic acid is converted to acetylcoenzyme A, which is introduced to TCA cycle (Fig. 2). [Pg.305]

The pathway of the metabolic process converting the original nutrients, which are of rather complex composition, to the simple end products of COj and HjO is long and complicated and consists of a large number of intermediate steps. Many of them are associated with electron and proton (or hydrogen-atom) transfer from the reduced species of one redox system to the oxidized species of another redox system. These steps as a rule occur, not homogeneously (in the cytoplasm or intercellular solution) but at the surfaces of special protein molecules, the enzymes, which are built into the intracellular membranes. Enzymes function as specific catalysts for given steps. [Pg.584]

Naughton, D., Whelan, M., Smith, E.C., Williams, R., Blake, D.R. and Grootveld, M. (1993). An investigation of the abnormal metabolic status of synovial fluid from patients with rheumatoid arthritis by high field proton nuclear magnetic resonance spectroscopy. FEBS Lett. 317, 135-138. [Pg.111]


See other pages where Protons metabolism is mentioned: [Pg.754]    [Pg.754]    [Pg.69]    [Pg.552]    [Pg.78]    [Pg.272]    [Pg.307]    [Pg.480]    [Pg.488]    [Pg.578]    [Pg.616]    [Pg.625]    [Pg.160]    [Pg.809]    [Pg.208]    [Pg.295]    [Pg.126]    [Pg.137]    [Pg.137]    [Pg.142]    [Pg.145]    [Pg.307]    [Pg.341]    [Pg.184]    [Pg.43]    [Pg.5]    [Pg.40]    [Pg.217]    [Pg.84]    [Pg.122]    [Pg.33]    [Pg.228]    [Pg.101]    [Pg.152]    [Pg.278]    [Pg.287]    [Pg.318]    [Pg.585]    [Pg.197]   
See also in sourсe #XX -- [ Pg.122 ]




SEARCH



Glucose metabolism proton production

Mitochondrial metabolism proton leak

Tissues metabolism, proton production

© 2024 chempedia.info