Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protonation, electron-transfer reactions

The ability to control and vary the charge of building parts (e.g., by protonation, electron transfer reactions, or substitution) and to limit growth by the presence of appropriate terminal ligands. [Pg.3]

The theory of the process where both Red and Ox species are adsorbed at the electrode surface was analyzed by Laviron [205] and Los and Laviron [206], Recently, such a case was studied experimentally for the redox couple azobenzene/hydrazobenzene at a mercury electrode by Prieto et al. [207] and the rate constants of the sequential protonation-electron transfer reactions were determined. The total impedance in this case is described by the circuit displayed in Fig. 2.35, but the rate constant is a more complex function of the electrode potential because the process involves two protonation and two electron transfer processes. [Pg.131]

For a proton-electron transfer reaction, a computational standard hydrogen electrode potential can be used directly. To do this, we take advantage of the equivalence of the chemical potential of hydrogen gas and the proton-electron... [Pg.157]

Several processes are unique to ions. A common reaction type in which no chemical rearrangement occurs but rather an electron is transferred to a positive ion or from a negative ion is tenued charge transfer or electron transfer. Proton transfer is also conunon in both positive and negative ion reactions. Many proton- and electron-transfer reactions occur at or near the collision rate [72]. A reaction pertaining only to negative ions is associative detaclunent [73, 74],... [Pg.806]

The discussion thus far in this chapter has been centred on classical mechanics. However, in many systems, an explicit quantum treatment is required (not to mention the fact that it is the correct law of physics). This statement is particularly true for proton and electron transfer reactions in chemistry, as well as for reactions involving high-frequency vibrations. [Pg.891]

Equation (5-69) is an important result. It was first obtained by Marcus " in the context of electron-transfer reactions. Marcus derivation is completely different from the one given here. In electron transfer from one molecule (or ion) to another, no bonds are broken or formed, so the transition state theory does not seem to be applicable. Marcus assumed negligible orbital overlap in the electron-transfer transition state, but he later obtained the same equation for group transfer reactions requiring significant overlap. Many applications have been made to proton transfers and nucleophilic displacements. ... [Pg.227]

Here, the relative stability of the anion radical confers to the cleavage process a special character. Thus, at a mercury cathode and in organic solvents in the presence of tetraalkylammonium salts, the mechanism is expected16 to be an ECE one in protic media or in the presence of an efficient proton donor, but of EEC type in aprotic solvents. In such a case, simple electron-transfer reactions 9 and 10 have to be associated chemical reactions and other electron transfers (at the level of the first step). Those reactions are shown below in detail ... [Pg.1006]

Because the breadth of chemical behavior can be bewildering in its complexity, chemists search for general ways to organize chemical reactivity patterns. Two familiar patterns are Br< )nsted acid-base (proton transfer) and oxidation-reduction (electron transfer) reactions. A related pattern of reactivity can be viewed as the donation of a pair of electrons to form a new bond. One example is the reaction between gaseous ammonia and trimethyl boron, in which the ammonia molecule uses its nonbonding pair of electrons to form a bond between nitrogen and boron ... [Pg.1499]

Unlike the simplest outer-sphere electron transfer reactions where the electrons are the only quantum subsystem and only two types of transitions are possible (adiabatic and nonadiabatic ones), the situation for proton transfer reactions is more complicated. Three types of transitions may be considered here5 ... [Pg.127]

Bimolecular reactions with paramagnetic species, heavy atoms, some molecules, compounds, or quantum dots refer to the first group (1). The second group (2) includes electron transfer reactions, exciplex and excimer formations, and proton transfer. To the last group (3), we ascribe the reactions, in which quenching of fluorescence occurs due to radiative and nonradiative transfer of excitation energy from the fluorescent donor to another particle - energy acceptor. [Pg.193]

In this section, we switch gears slightly to address another contemporary topic, solvation dynamics coupled into the ESPT reaction. One relevant, important issue of current interest is the ESPT coupled excited-state charge transfer (ESCT) reaction. Seminal theoretical approaches applied by Hynes and coworkers revealed the key features, with descriptions of dynamics and electronic structures of non-adiabatic [119, 120] and adiabatic [121-123] proton transfer reactions. The most recent theoretical advancement has incorporated both solvent reorganization and proton tunneling and made the framework similar to electron transfer reaction, [119-126] such that the proton transfer rate kpt can be categorized into two regimes (a) For nonadiabatic limit [120] ... [Pg.248]

The first attempt to describe the dynamics of dissociative electron transfer started with the derivation from existing thermochemical data of the standard potential for the dissociative electron transfer reaction, rx r.+x-,12 14 with application of the Butler-Volmer law for electrochemical reactions12 and of the Marcus quadratic equation for a series of homogeneous reactions.1314 Application of the Marcus-Hush model to dissociative electron transfers had little basis in electron transfer theory (the same is true for applications to proton transfer or SN2 reactions). Thus, there was no real justification for the application of the Marcus equation and the contribution of bond breaking to the intrinsic barrier was not established. [Pg.123]

D.R. McMillin, Purdue University In addition to the charge effects discussed by Professor Sykes, I would like to add that structural effects may help determine electron transfer reactions between biological partners. A case in point is the reaction between cytochrome C551 and azurin where, in order to explain the observed kinetics, reactive and unreactive forms of azurin have been proposed to exist in solution (JL). The two forms differ with respect to the state of protonation of histidine-35 and, it is supposed, with respect to conformation as well. In fact, the lH nmr spectra shown in the Figure provide direct evidence that the nickel(II) derivative of azurin does exist in two different conformations, which interconvert slowly on the nmr time-scale, depending on the state of protonation of the His35 residue (.2) As pointed out by Silvestrini et al., such effects could play a role in coordinating the flow of electrons and protons to the terminal acceptor in vivo. [Pg.191]

Ramamurthy, V., Lakshminarasimhan, P., Grey, C.P. and Johnston, L.J. (1998). Energy transfer, proton transfer and electron transfer reactions within zeolites. J. Chem. Soc. Chem. Commun. 2411-2424... [Pg.265]

However, a closer inspection of the experimental data reveals several differences. For ion-transfer reactions the transfer coefficient a can take on any value between zero and one, and varies with temperature in many cases. For outer-sphere electron-transfer reactions the transfer coefficient is always close to 1/2, and is independent of temperature. The behavior of electron-transfer reactions could be explained by the theory presented in Chapter 6, but this theory - at least in the form we have presented it - does not apply to ion transfer. It can, in fact, be extended into a model that encompasses both types of reactions [7], though not proton-transfer reactions, which are special because of the strong interaction of the proton with water and because of its small mass. [Pg.118]

For my first volume as Editor, I have invited Professor Colin D. Hubbard (University of Erlangen-Niirnberg, Erlangen, Germany and University of New Hampshire, Durham, NH, USA) as co-editor. Professor Hubbard studied chemistry at the University of Sheffield, and obtained his PhD with Ralph G. Wilkins. Following post-doctoral work at MIT, Cornell University and University of California in Berkeley, he joined the academic staff of the University of New Hampshire, Durham, where he became Professor of Chemistry in 1979. His interests cover the areas of high-pressure chemistry, electron transfer reactions, proton tunnelling and enzyme catalysis. [Pg.480]

In this section, we give the highlights of a few case studies of the dynamics of chemical reactions. We begin with a brief survey of heavy particle charge transfer reactions, followed by a few words about electron transfer reactions and proton transfer reactions. [Pg.245]

From the ab initio quantum chemistry coupled with a molecular dynamics treatment of the surrounding media, Zhao and Cuckier have reported a study of a proton coupled electron transfer reaction [115],... [Pg.299]

Zhao, X. G. and Cuckier, R. I. Molecular dynamics and quantum chemistry study of a proton-coupled electron transfer reaction, J.Phys.Chem., 99 (1995), 945-954... [Pg.353]

Another well-studied electron transfer reaction is the oxidation of aqueous benzidine in the presence of various clays (2, 40, 43, 50, 51). An electron from the colorless benzidine molecule is abstracted by the clay with formation of a blue monovalent radical cation. Upon drying of the blue clay-benzidine system, a yellow color is produced. There is disagreement in the literature with respect to the chemical identity of the yellow product (2, 40, 52) however, in the case of hectorite, the yellow product has been suggested to be the protonated form of the radical cation (divalent radical cation) (2, 52). There is also disagreement about whether the electron-accepting sites of the clay are ferric iron at the planar surfaces, aluminum ions at the edges, or exchangeable cations <2, I). [Pg.467]

As with proton transfer reactions, the thermodynamic data determined in the two phases can also be compared in the case of electron transfer reactions, as shown in Figure l40. [Pg.387]


See other pages where Protonation, electron-transfer reactions is mentioned: [Pg.211]    [Pg.289]    [Pg.206]    [Pg.210]    [Pg.31]    [Pg.211]    [Pg.289]    [Pg.206]    [Pg.210]    [Pg.31]    [Pg.2990]    [Pg.14]    [Pg.352]    [Pg.727]    [Pg.782]    [Pg.173]    [Pg.227]    [Pg.186]    [Pg.204]    [Pg.225]    [Pg.76]    [Pg.463]    [Pg.121]    [Pg.621]    [Pg.324]    [Pg.828]    [Pg.215]    [Pg.220]    [Pg.110]    [Pg.74]    [Pg.41]   
See also in sourсe #XX -- [ Pg.50 ]




SEARCH



2 -Electron-2 -proton transfer

Electron proton

Electron protonation

Proton reactions

Proton transfer reactions

Proton-electron transfer reaction

Protonation Reactions

© 2024 chempedia.info