Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proton mitochondria

As the loss of oxidative phosphorylation was not due to the absence of proteins, it appeared to us that the results indicate that some change in the general properties of the membrane occurs. A property of mitochondria essential for coupled oxidative phosphorylation is the impermeability of the inner membrane to protons. Mitochondria from unsaturated-fatty-acid-de-pleted cells have little permeability barrier to proton entry When a small amount of acid is added to a suspension of such mitochondria, there is a rapid equilibration of protons between the mitochondrial matrix and the... [Pg.115]

Figure 12-11. Combination of phosphate transporter ( ) with the adenine nucleotide transporter ((2)) in ATP synthesis. The H+ZP, symport shown is equivalent to the P /OH antiport shown in Figure 12-10. Four protons are taken into the mitochondrion for each ATP exported. However, one less proton would be taken in when ATP is used inside the mitochondrion. Figure 12-11. Combination of phosphate transporter ( ) with the adenine nucleotide transporter ((2)) in ATP synthesis. The H+ZP, symport shown is equivalent to the P /OH antiport shown in Figure 12-10. Four protons are taken into the mitochondrion for each ATP exported. However, one less proton would be taken in when ATP is used inside the mitochondrion.
Energy-linked transhydrogenase, a protein in the inner mitochondrial membrane, couples the passage of protons down the electrochemical gradient from outside to inside the mitochondrion with the transfer of H from intramitochondrial NADH to NADPH for intramitochondrial enzymes such as glutamate dehydrogenase and hydroxylases involved in steroid synthesis. [Pg.99]

Figure 12-13. Malate shuttle for transfer of reducing equivalents from the cytosol into the mitochondrion. Ketoglutarate transporter , glutamate/aspartate transporter (note the proton symport with glutamate). Figure 12-13. Malate shuttle for transfer of reducing equivalents from the cytosol into the mitochondrion. Ketoglutarate transporter , glutamate/aspartate transporter (note the proton symport with glutamate).
Homeostatic mechanisms also allow animals to control their intracellular pH very strictly. In humans for example, blood pH (usually taken as a reliable but indirect measure of cellular pH) is 7.4 0.04. At 37 °C cytosolic pH is actually slightly lower at about 7.0 but different compartments within the eukaryotic cells may have quite different pH, for example, lysosomes have an internal pH of about 5 the inside of a mitochondrion is more alkaline than the outside whilst the inside of a phagosome in a white blood cell is more acidic than its surrounding cytosol, both situations arising due to proton pumping across a membrane. [Pg.15]

What do I mean by a proton concentration gradient Simply, there is a higher concentration of protons in the space between the inner and outer membranes of the mitochondrion than in the mitochondrial interior. The gradient is formed from the energy released in the transfer of electrons down the electron transport chain. Put another way, the released energy is employed to pump protons across the inner mitochondrial membrane into the intermembrane space. [Pg.234]

Figure 9.13 Examples of mitochondrial transport systems for anions. 0 The anb port system transfers malate into but oxo-glutarate out of the mitochondrion. The symport system transfers both pyruvate and protons into the mitochondrion across the inner membrane. Both transport processes are electroneutral. Figure 9.13 Examples of mitochondrial transport systems for anions. 0 The anb port system transfers malate into but oxo-glutarate out of the mitochondrion. The symport system transfers both pyruvate and protons into the mitochondrion across the inner membrane. Both transport processes are electroneutral.
Oxidizible substrates from glycolysis, fatty acid or protein catabolism enter the mitochondrion in the form of acetyl-CoA, or as other intermediaries of the Krebs cycle, which resides within the mitochondrial matrix. Reducing equivalents in the form of NADH and FADH pass electrons to complex I (NADH-ubiquinone oxidore-ductase) or complex II (succinate dehydrogenase) of the electron transport chain, respectively. Electrons pass from complex I and II to complex III (ubiquinol-cyto-chrome c oxidoreductase) and then to complex IV (cytochrome c oxidase) which accumulates four electrons and then tetravalently reduces O2 to water. Protons are pumped into the inner membrane space at complexes I, II and IV and then diffuse down their concentration gradient through complex V (FoFi-ATPase), where their potential energy is captured in the form of ATP. In this way, ATP formation is coupled to electron transport and the formation of water, a process termed oxidative phosphorylation (OXPHOS). [Pg.357]

As salicylate is a weak acid and has sufficient lipid solubility, it is able to diffuse across membranes. Thus, it can cross the mitochondrial membranes in its protonated form, releasing the proton into the matrix of the mitochondrion. By increasing the proton concentration, this dissipates the proton gradient and thus halts ATP production (Fig. 7.60). [Pg.356]

It has been known for many years that the mitochondrion shows a respiration-linked transport of a number of ions. Of these, calcium has attracted the most attention since it depends on a specific transport system with high-affinity binding sites. The uptake of calcium usually also involves a permeant anion, but in the absence of this, protons are ejected as the electron transfer system operates. The result is either the accumulation of calcium salts in the mitochondrial matrix or an alkalinization of the interior of the mitochondrion. The transfer of calcium inwards stimulates oxygen utilization but provides an alternative to the oxidative phosphorylation of ADP618 ... [Pg.102]

How Many Protons in a Mitochondrion Electron transfer translocates protons from the mitochondrial matrix to the external medium, establishing a pH gradient across the inner membrane (outside more acidic than inside). The tendency of protons to diffuse back into the matrix is the driving force for ATP synthesis by ATP synthase. During oxidative phosphorylation by a suspension of mitochondria in a medium of pH 7.4, the pH of the matrix has been measured as 7.7. [Pg.749]

Current estimates are that three protons move into the matrix through the ATP-synthase for each ATP that is synthesized. We see below that one additional proton enters the mitochondrion in connection with the uptake of ADP and Pi and export of ATP, giving a total of four protons per ATP. How does this stoichiometry relate to the P-to-O ratio When mitochondria respire and form ATP at a constant rate, protons must return to the matrix at a rate that just balances the proton efflux driven by the electron-transport reactions. Suppose that 10 protons are pumped out for each pair of electrons that traverse the respiratory chain from NADH to 02, and 4 protons move back in for each ATP molecule that is synthesized. Because the rates of proton efflux and influx must balance, 2.5 molecules of ATP (10/4) should be formed for each pair of electrons that go to 02. The P-to-O ratio thus is given by the ratio of the proton stoichiometries. If oxidation of succinate extrudes six protons per pair of electrons, the P-to-O ratio for this substrate is 6/4, or 1.5. These ratios agree with the measured P-to-O ratios for the two substrates. [Pg.321]

Let s now consider how much free energy is released by moving protons into the mitochondrion. Is it really enough to drive the synthesis of ATP The free energy change depends both on the ratio of the proton concentrations on the two sides of the membrane and on the difference between the electric potentials on the two sides. [Pg.321]

The combined effect of exchanging extramitochon-drial ADP-3 and H2P04 for mitochondrial ATP-4 and OH is to move one proton into the mitochondrial matrix for every molecule of ATP that the mitochondrion releases into the cytosol. This proton translocation must be considered, along with the movement of protons through the ATP synthase, to account for the P-to-O ratio of oxidative phosphorylation. If three protons pass through the ATP synthase, and the adenine nucleotide and Pj transport systems move one additional proton, then four protons in total move into the matrix for each ATP molecule provided to the cytosol. [Pg.325]

Some proteins, especially those destined for the eukaryotic mitochondria and chloroplasts, are transported after their synthesis on free polysomes is complete. Such transport is known as posttranslational transport. In the case of posttranslational transport it is believed that the polypeptide to be transported must be unfolded from its native folded configuration by a system of polypeptide-chain-binding proteins (PCBs) before it can pass through the membrane. Posttranslational transport into the mitochondrion requires both ATP and a proton gradient. Presumably the energy from one or both of these sources is used to unfold the protein or separate it from the PCB system so that it can pass through the membrane. [Pg.757]

According to the concept discussed in Refs [24, 25], the F0 factor is responsible for H+ translocation between the environment (in relation to mitochondrion), aqueous phase and the membrane, where fixed proton-acceptor groups X are located. If H+/ATP stoichiometry equals 2, they may be absorbed in the ATP-synthase reaction ... [Pg.75]

To put it differently, more than one proton should be transferred through the membrane per molecule of synthesized ATP, i.e. the minimal ratio equals 2. At the same time, only one proton can be transferred through the membrane to mitochondrion. If this transfer is related to dissociation of the water molecule (3.51), produced during oxidative phosphorylation, the number of transferred ions must equal 1. [Pg.75]

Oxidative phosphorylation is ATP synthesis linked to the oxidation of NADH and FADH2 by electron transport through the respiratory chain. This occurs via a mechanism originally proposed as the chemiosmotic hypothesis. Energy liberated by electron transport is used to pump H+ ions out of the mitochondrion to create an electrochemical proton (H+) gradient. The protons flow back into the mitochondrion through the ATP synthase located in the inner mitochondrial membrane, and this drives ATP synthesis. Approximately three ATP molecules are synthesized per NADH oxidized and approximately two ATPs are synthesized per FADH2 oxidized. [Pg.348]


See other pages where Proton mitochondria is mentioned: [Pg.125]    [Pg.96]    [Pg.99]    [Pg.140]    [Pg.646]    [Pg.477]    [Pg.478]    [Pg.288]    [Pg.348]    [Pg.193]    [Pg.50]    [Pg.180]    [Pg.410]    [Pg.193]    [Pg.88]    [Pg.226]    [Pg.256]    [Pg.507]    [Pg.749]    [Pg.293]    [Pg.939]    [Pg.1038]    [Pg.1047]    [Pg.306]    [Pg.319]    [Pg.322]    [Pg.78]    [Pg.84]    [Pg.356]    [Pg.44]    [Pg.278]    [Pg.283]    [Pg.352]    [Pg.385]   
See also in sourсe #XX -- [ Pg.309 ]




SEARCH



Mitochondria proton leak

Mitochondria proton pump

Mitochondria proton translocation across

Proton gradient mitochondria

Proton gradient, in mitochondria

© 2024 chempedia.info