Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mitochondria proton leak

The control of the respiration process and ATP synthesis shifts as the metabolic state of the mitochondria changes. In an isolated mitochondrion, control over the respiration process in state 4 is mainly due to the proton leak through the mitochondrial inner membrane. This type of control decreases from state 4 to state 3, while the control by the adenine nucleotide and the dicarboxylate carriers, cytochrome oxidase, increases. ATP utilizing reactions and transport activities also increase. Therefore, in state 3, most of the control is due to respiratory chain and substrate transport. [Pg.552]

Overall, each NADH donates two electrons, equivalent to the reduction of V2 of an O2 molecule. A generally (but not universally) accepted estimate of the stoichiometry of ATP synthesis is that four protons are pumped at complex I, four protons at complex III, and two at complex IV. With four protons translocated for each ATP synthesized, an estimated 2.5 ATPs are formed for each NADH oxidized and 1.5 ATPs for each of the other FAD(2H)-containing flavoproteins that donate electrons to CoQ. (This calculation neglects proton requirements for the transport of phosphate and substrates from the cytosol, as well as the basal proton leak.) Thus, only approximately 30% of the energy available from NADH and FAD(2H) oxidation by O2 is used for ATP synthesis. Some of the remaining energy in the electrochemical potential is used for the transport of anions and Ca into the mitochondrion. The remainder of the energy is released as heat. Consequently, the electron transport chain is also our major source of heat. [Pg.388]


See other pages where Mitochondria proton leak is mentioned: [Pg.281]    [Pg.281]    [Pg.50]    [Pg.324]   
See also in sourсe #XX -- [ Pg.29 , Pg.399 ]




SEARCH



Leaks

Proton leak

Proton mitochondria

© 2024 chempedia.info