Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proteolytic proteins with

Enzyme digestion The treating of a protein with a proteolytic enzyme to form a number of smaller peptides which may then be sequenced. [Pg.305]

A small number of proteins, and again insulin is an example, are synthesized as pro-proteins with an additional amino acid sequence which dictates the final three-dimensional structure. In the case of proinsulin, proteolytic attack cleaves out a stretch of 35 amino acids in the middle of the molecule to generate insulin. The peptide that is removed is known as the C chain. The other chains, A and B, remain crosslinked and thus locked in a stable tertiary stiucture by the disulphide bridges formed when the molecule originally folded as proinsulin. Bacteria have no mechanism for specifically cutting out the folding sequences from pro-hormones and the way of solving this problem is described in a later section. [Pg.459]

The combination of this top-down proteomics approach, which generates information on the structure of the intact protein, with a bottom-up approach for protein identification (using MS/MS data of tryptic peptides from the collected fractions) has been particularly useful for identifying posttranslational modifications, cotransla-tional processing, and proteolytic modifications in a number of proteins. Examples from our work will be shown to illustrate this hybrid methodology for proteomics analysis. [Pg.294]

Alpha-1 A protein with the property of inactivating proteolytic enzymes such as leucocyte collagenase and elastase. [NIH]... [Pg.60]

Since FPIAs are conducted as homogeneous immunoassays, they are susceptible to effects from endogenous fluorophores and from intersample variations. Such problems and others due to the sample matrix are largely avoided by sample dilutions of several hundredfold. Low-affinity, nonspecific binding of tracers to sample proteins, when present in sufficiently high concentrations, can result in a falsely elevated polarization signal. Interference from sample proteins can be eliminated when warranted, by proteolytic hydrolysis with pepsin.(46)... [Pg.464]

For the SAXS studies a CBH II sample was prepared by affinity chromatography from r. reesei QM 9414 to give the enzyme in a homogeneous form 27. In SDS-PAGE the protein had a size of 58 kDa and the isoelectric point was 4.9. Glycosy-lation was estimated as 8 to 18 % 36. The molar absorptivity at 280 nm was 75 000 M xm To obtain the core protein partial proteolytic hydrolysis with papain was per-... [Pg.308]

Kuehler and Stine (43) studied the functional properties of whey protein with respect to emulsifying capacity as affected by treatment with three proteolytic enzymes. Two microbial proteases and pepsin were examined. The emulsion capacity decreased as proteolysis continued, suggesting that there is an optimum mean molecular size of the whey proteins contributing to emulsification. [Pg.288]

Proteins can be modified by proteolytic enzymes with limited reduction in their nutritional bioavailability. Enzymatic hydrolysis of peptide bonds of proteins will reduce their molecular size, affect their structures, expose different regions of their molecules to the environment, and thereby alter their contribution to functionality, e.g. by increasing and decreasing the solubility and viscosity properties, respectively, of aqueous solutions. These changes can be controlled by carefully selecting proteolytic enzymes, maintaining proper treatment conditions, and monitoring the hydrolysis reactions. [Pg.340]

Polypeptides with more than a few hundred amino acid residues often fold into two or more stable, globular units called domains. In many cases, a domain from a large protein will retain its correct three-dimensional structure even when it is separated (for example, by proteolytic cleavage) from the remainder of the polypeptide chain. A protein with multiple domains may appear to have a distinct globular lobe for each domain (Fig. 4-19), but, more commonly, extensive contacts between domains make individual domains hard to discern. Different domains often have distinct functions, such as the binding of small molecules or interaction with other proteins. Small proteins usually have only one domain (the domain is the protein). [Pg.140]

Papain is a protein-hydrolyzing (proteolytic) enzyme with an -SH group and an imidazole group at the active site. Write a reasonable structure for a "tetrahedral intermediate" that would be expected to arise during formation of an acyl enzyme intermediate. [Pg.675]

Lysine is not only a constituent of proteins. It can also be trimethylated and converted to carnitine (p. 944). In mammals some specific lysyl side chains of proteins undergo N-trimethylation and proteolytic degradation with release of free trimethyllysine (Eq. 24-30) 278/279 The free trimethyllysine then undergoes hydroxylation by a 2-oxoglutarate-Fe2+-ascorbate-dependent hydroxylase (Eq. 18-51) to form P-hydroxytrimethyllysine, which is cleaved by a PLP-dependent enzyme (Chapter 14). The resulting aldehyde is oxidized to the carboxylic acid and is converted by a second 2-oxoglutarate-Fe2+-ascorbate-dependent hydroxylase to carnitine (Eq. 24-30 see also Eq. 18-50). [Pg.1386]

The blood coagulation cascade. Each of the curved red arrows represents a proteolytic reaction, in which a protein is cleaved at one or more specific sites. With the exception of fibrinogen, the substrate in each reaction is an inactive zymogen except for fibrin, each product is an active protease that proceeds to cleave another member in the series. Many of the steps also depend on interactions of the proteins with Ca2+ ions and phospholipids. The cascade starts when factor XII and prekallikrein come into contact with materials that are released or exposed in injured tissue. (The exact nature of these materials is still not fully clear.) When thrombin cleaves fibrinogen at several points, the trimmed protein (fibrin) polymerizes to form a clot. [Pg.177]


See other pages where Proteolytic proteins with is mentioned: [Pg.353]    [Pg.149]    [Pg.1026]    [Pg.275]    [Pg.76]    [Pg.335]    [Pg.35]    [Pg.224]    [Pg.313]    [Pg.319]    [Pg.245]    [Pg.298]    [Pg.299]    [Pg.302]    [Pg.13]    [Pg.83]    [Pg.269]    [Pg.42]    [Pg.241]    [Pg.457]    [Pg.75]    [Pg.1]    [Pg.145]    [Pg.215]    [Pg.216]    [Pg.218]    [Pg.584]    [Pg.366]    [Pg.492]    [Pg.51]    [Pg.148]    [Pg.522]    [Pg.631]    [Pg.6]    [Pg.232]    [Pg.133]    [Pg.129]   
See also in sourсe #XX -- [ Pg.223 ]




SEARCH



Protein with proteolytic enzymes

Proteolytic

Proteolytic proteins

© 2024 chempedia.info