Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proteins, histidine residues

Our biomimetic investigations have focused on the metalloproteins hemocyanin (He) (11-17) and tyrosinase (11,12,14,16,18,29), which contain two copper ions in their active center. The function of hemocyanin is to bind and transport dioxygen in the hemolymph of molluscs and arthropods. Studies employing EXAFS spectroscopy have shown that in the deoxy form, two (19-21) or three (13,21) imidazole units fiom protein histidine residues coordinate to each cuprous ion. Upon addition of O2 to give oxy-Hc, considerable changes take place in the coordination sphere giving rise to tetragonally coordinated Cu(II) ions... [Pg.85]

Assays for several other potential urinary analytes have been developed, but the analytes have yet to be confirmed in human exposed samples. N7-(2-hydroxyethylthioethyl) guanine is a breakdown product from alkylated DNA that has been observed in animal studies. Fidder et al. (1996a) developed both a GC-MS method that requires derivatization of the analyte and also a LC-MS-MS method that can analyze the compound directly. Other possible urinary analytes are an imidazole derivative formed from the reaction of sulfur mustard with protein histidine residues (Sandelowsky et al., 1992) and sulfur mustard adducts to metallothionien (Price et al., 2000). [Pg.518]

The shape of a large protein is influenced by many factors including of course Its primary and secondary structure The disulfide bond shown m Figure 27 18 links Cys 138 of carboxypeptidase A to Cys 161 and contributes to the tertiary structure Car boxypeptidase A contains a Zn " ion which is essential to the catalytic activity of the enzyme and its presence influences the tertiary structure The Zn ion lies near the cen ter of the enzyme where it is coordinated to the imidazole nitrogens of two histidine residues (His 69 His 196) and to the carboxylate side chain of Glu 72... [Pg.1146]

The world of zinc-containing DNA-binding proteins is by no means exhausted by these three subfamilies. Several other subfamilies are already known with different three-dimensional structures and different sequence patterns of cysteine and histidine residues that form the zinc ligands. Further subfamilies may well be discovered as the genomes of different species are sequenced whether or not any fundamentally new principles for DNA-protein recognition will be discovered amongst these new subfamilies remains to be seen. [Pg.191]

Complex II is perhaps better known by its other name—succinate dehydrogenase, the only TCA cycle enzyme that is an integral membrane protein in the inner mitochondrial membrane. This enzyme has a mass of approximately 100 to 140 kD and is composed of four subunits two Fe-S proteins of masses 70 kD and 27 kD, and two other peptides of masses 15 kD and 13 kD. Also known as flavoprotein 2 (FP2), it contains an FAD covalently bound to a histidine residue (see Figure 20.15), and three Fe-S centers a 4Fe-4S cluster, a 3Fe-4S cluster, and a 2Fe-2S cluster. When succinate is converted to fumarate in the TCA cycle, concomitant reduction of bound FAD to FADHg occurs in succinate dehydrogenase. This FADHg transfers its electrons immediately to Fe-S centers, which pass them on to UQ. Electron flow from succinate to UQ,... [Pg.683]

Type 3 a pair of Cu atoms about 360 pm apart and attaehed to protein through histidine residues these effect O2 transport by means of the... [Pg.1198]

Histidine phosphatases and aspartate phosphatases are well established in lower organisms, mainly in bacteria and in context with two-component-systems . Reversible phosphorylation of histidine residues in vertebrates is in its infancy. The first protein histidine phosphatase (PHP) from mammalian origin was identified just recently. The soluble 14 kD protein does not resemble any of the other phosphatases. ATP-citrate lyase and the (3-subunit of heterotrimeric GTP-binding proteins are substrates of PHP thus touching both, metabolic pathways and signal transduction [4]. [Pg.1014]

Klumpp S, Krieglstein J (2005) Reversible phosphorylation of histidine residues in vertebrate proteins. Minireview Biochim Biophys Acta 1754 291—295... [Pg.1015]

Early mutational studies of the Rieske protein from 6ci complexes have been performed with the intention of identifying the ligands of the Rieske cluster. These studies have shown that the four conserved cysteine residues as well as the two conserved histidine residues are essential for the insertion of the [2Fe-2S] cluster (44, 45). Small amounts of a Rieske cluster with altered properties were obtained in Rhodobacter capsulatus when the second cysteine in the cluster binding loop II (Cys 155, corresponding to Cys 160 in the bovine ISF) was replaced by serine (45). The fact that all four cysteine residues are essential in Rieske clusters from be complexes, but that only two cysteines are conserved in Rieske-type clusters, led to the suggestion that the Rieske protein may contain a disulfide bridge the disulfide bridge was finally shown to exist in the X-ray structure (9). [Pg.109]

Two-dimensional protein layer orientation could be also effected by metal-ion coordination Monolayer of iminodiacetate-Cu(II) lipid was successfully employed as substrate for oriented immobilization of proteins naturally displaying histidine residues on their surface [37]. Affmity-resin-displaying Ni(II) complexes could also be successfully employed for oriented protein immobilization [38]. [Pg.465]

Phenylphosphate synthase consists of three subunits with molecular masses of 70, 40, and 24kDa. Subunit 1 resembles the central part of classical phospho-enolpyruvate synthase which contains a conserved histidine residue. It catalyzes the exchange of free [ C] phenol and the phenol moiety of phenylphosphate but not the phosphorylation of phenol. Phosphorylation of phenol requires subunit 1, MgATP, and another protein, subunit 2 (40kDa), which resembles the N-terminal part of phosphoenolpyruvate synthase. Subunit 1 and 2 catalyze the following reaction ... [Pg.89]


See other pages where Proteins, histidine residues is mentioned: [Pg.104]    [Pg.831]    [Pg.408]    [Pg.634]    [Pg.70]    [Pg.799]    [Pg.238]    [Pg.230]    [Pg.254]    [Pg.549]    [Pg.104]    [Pg.831]    [Pg.408]    [Pg.634]    [Pg.70]    [Pg.799]    [Pg.238]    [Pg.230]    [Pg.254]    [Pg.549]    [Pg.1148]    [Pg.200]    [Pg.176]    [Pg.176]    [Pg.357]    [Pg.492]    [Pg.1148]    [Pg.488]    [Pg.562]    [Pg.1225]    [Pg.182]    [Pg.877]    [Pg.1483]    [Pg.853]    [Pg.419]    [Pg.43]    [Pg.105]    [Pg.118]    [Pg.120]    [Pg.227]    [Pg.401]    [Pg.281]    [Pg.58]    [Pg.41]    [Pg.103]    [Pg.209]    [Pg.296]    [Pg.301]   
See also in sourсe #XX -- [ Pg.90 ]




SEARCH



Histidine residues

Protein residues

Proteins Histidine

Proteins residual

© 2024 chempedia.info