Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Receptor protein, calmodulin

Fig. 12. Tentative model of the signal transduction chain that links the perception of pectic fragments to defense responses in carrot cells. Abbreviations apy, heterotrimeric G protein CaM, calmodulin 4CL, 4-coumarate-CoA ligase CTX, cholera toxin FC, fusicoccine GDP-P-S and GTP-y-S, guanosine 5 -0-(2-thiodiphosphate) and guanosine 5 -0-(3-thiotriphosphate) IP3, 1,4,5-inositol trisphosphate PAL, phenylalanine ammonia-lyase PLC, phospholipase C PR, pathogenesis related PTX, pertussis toxin Rc, receptor SP, staurosporine. Activation and inhibition are symbolized by + and -respectively. Fig. 12. Tentative model of the signal transduction chain that links the perception of pectic fragments to defense responses in carrot cells. Abbreviations apy, heterotrimeric G protein CaM, calmodulin 4CL, 4-coumarate-CoA ligase CTX, cholera toxin FC, fusicoccine GDP-P-S and GTP-y-S, guanosine 5 -0-(2-thiodiphosphate) and guanosine 5 -0-(3-thiotriphosphate) IP3, 1,4,5-inositol trisphosphate PAL, phenylalanine ammonia-lyase PLC, phospholipase C PR, pathogenesis related PTX, pertussis toxin Rc, receptor SP, staurosporine. Activation and inhibition are symbolized by + and -respectively.
Other mechanisms have also been implicated in odor adaptation, including cAMP-dependent phosphorylation of ciliary proteins via protein kinase A G-protein-receptor kinase activity (GRK3), possibly via phosphorylation of the OR Ca2+/calmodulin kinase II (CaMKII) phosphorylation of ACIII cGMP and carbon monoxide [ 31 ]. These latter three mechanisms have been particularly linked to longer-lasting forms of adaptation, on the order of tens of seconds (for CaMKII) or minutes (CO/cGMP). Together with the short-term adaptation described above, these various molecular mechanisms provide the OSN with a number of ways to fine-tune odor responses over time. [Pg.823]

Key Words Guanosine-5 -0-(3-thio)triphosphate phosphorylation serotonin (5-hydroxytryptamine) G protein kinase receptor calmodulin phospholipase. [Pg.143]

It was not until 1969 that the first calcium receptor protein, troponin-C was isolated from muscle by Ebashi [14], Shortly afterward, another calcium receptor, calmodulin [15] was identified and it became apparent that unlike the cAMP messenger system, more than one receptor protein existed for calcium. [Pg.67]

Autoreceptors appear to regulate transmitter synthesis and/or release. The mechanisms by which these receptors exert their activity in the nerve terminal is unknown, although processes involving protein phosphorylation, calmodulin, and protein carboxymethylation have been proposed. Released transmitter is believed to feed back to the terminal from which it was released and inhibit further release by binding to the autoreceptor. Although autoreceptors have been identified to dopamine, norepinephrine, serotonin, and GABA, the most detailed information to date concerns the norepinephrine autoreceptor, which shares properties with the a-receptor. [Pg.126]

As with cAMP-stimulated protein kinase, the specific cellular responses to protein kinase C activation depend on the ensemble of target proteins that become phosphorylated in a given cell. Known target proteins include calmodulin, the insulin receptor, the adrenergic receptor (see here), the glucose transporter, HMG-CoA reductase, cytochrome P450, and tyrosine hydroxylase. [Pg.658]

Another mechanism in initiating the contraction is agonist-induced contraction. It results from the hydrolysis of membrane phosphatidylinositol and the formation of inositol triphosphate (IP3)- IP3 in turn triggers the release of intracellular calcium from the sarcoplasmic reticulum and the influx of more extracellular calcium. The third mechanism in triggering the smooth muscle contraction is the increase of calcium influx through the receptor-operated channels. The increased cytosolic calcium enhances the binding to the protein, calmodulin [73298-54-1]. [Pg.141]

Smooth muscle contractions are subject to the actions of hormones and related agents. As shown in Figure 17.32, binding of the hormone epinephrine to smooth muscle receptors activates an intracellular adenylyl cyclase reaction that produces cyclic AMP (cAMP). The cAMP serves to activate a protein kinase that phosphorylates the myosin light chain kinase. The phosphorylated MLCK has a lower affinity for the Ca -calmodulin complex and thus is physiologically inactive. Reversal of this inactivation occurs via myosin light chain kinase phosphatase. [Pg.560]

AMPK can also be activated by a Ca2+-mediated pathway involving phosphorylation at Thr-172 by the Ca2+/calmodulin-dependent protein kinase, CaMKK 3. CaMKKa and CaMKK 3 were discovered as the upstream kinase for the calmodulin-dependent protein kinases-1 and -IV they both activate AMPK in a Ca2+/ calmodulin-dependent manner in cell-free assays, although CaMKK 3 appears to much more active against AMPK in intact cells. Expression of CaMKKa and CaMKK(3 primarily occurs in neural tissues, but CaMKKp is also expressed in some other cell types. Thus, the Ca2+-mediated pathway for AMPK activation has now been shown to occur in response to depolarization in rat neuronal tissue, in response to thrombin (acting via a Gq-coupled receptor) in endothelial cells, and in response to activation of the T cell receptor in T cells. [Pg.71]

The ETa receptor activates G proteins of the Gq/n and G12/i3 family. The ETB receptor stimulates G proteins of the G and Gq/11 family. In endothelial cells, activation of the ETB receptor stimulates the release of NO and prostacyclin (PGI2) via pertussis toxin-sensitive G proteins. In smooth muscle cells, the activation of ETA receptors leads to an increase of intracellular calcium via pertussis toxin-insensitive G proteins of the Gq/11 family and to an activation of Rho proteins most likely via G proteins of the Gi2/i3 family. Increase of intracellular calcium results in a calmodulin-dependent activation of the myosin light chain kinase (MLCK, Fig. 2). MLCK phosphorylates the 20 kDa myosin light chain (MLC-20), which then stimulates actin-myosin interaction of vascular smooth muscle cells resulting in vasoconstriction. Since activated Rho... [Pg.473]

Figure 1. Simplified schematic of receptor-mediated signal transduction in neutrophils. Binding of ligand to the receptor activates a guanine-nucleotide-binding protein (G protein), which then stimulates phospholipase C. Phosphatidylinositol 4,5-bis-phosphate is cleaved to produce diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG stimulates protein kinase C. IP3 causes the release of Ca from intracellular stores, which results in an increase in the cytosolic Ca concentration. This increase in Ca may stimulate protein kinase C, calmodulin-dependent protein kinases, and phospholipase A2. Protein phosphorylation events are thought to be important in stimulating degranulation and oxidant production. In addition, ionic fluxes occur across the plasma membrane. It is possible that phospholipase A2 and ionic channels may be governed by G protein interactions. ... Figure 1. Simplified schematic of receptor-mediated signal transduction in neutrophils. Binding of ligand to the receptor activates a guanine-nucleotide-binding protein (G protein), which then stimulates phospholipase C. Phosphatidylinositol 4,5-bis-phosphate is cleaved to produce diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG stimulates protein kinase C. IP3 causes the release of Ca from intracellular stores, which results in an increase in the cytosolic Ca concentration. This increase in Ca may stimulate protein kinase C, calmodulin-dependent protein kinases, and phospholipase A2. Protein phosphorylation events are thought to be important in stimulating degranulation and oxidant production. In addition, ionic fluxes occur across the plasma membrane. It is possible that phospholipase A2 and ionic channels may be governed by G protein interactions. ...
Single protein kinases such as PKA, PKC, and Ca +-calmodulin (CaM)-kinases, which result in the phosphorylation of serine and threonine residues in target proteins, play a very important role in hormone action. The discovery that the EGF receptor contains an intrinsic tyrosine kinase activity that is activated by the binding of the hgand EGF was an important breakthrough. The insuhn and IGF-I receptors also contain intrinsic... [Pg.465]

PKA and PKC are, however, not the only kinases to regulate TRPVl. The Ca /calmodulin-dependent kinase II (CaMKII) sensitizes TRPVl by phosphorylation [57, 58], as does phophatidylinositol 3-kinase (PI3K) via its downstream target AKT [59]. This latter finding links TRPVl to the ERK (extracellular signal-regulated protein kinase) pathway. The non-receptor tyrosine kinase Src likewise potentiates capsaicin-induced currents [60]. [Pg.150]


See other pages where Receptor protein, calmodulin is mentioned: [Pg.114]    [Pg.114]    [Pg.49]    [Pg.558]    [Pg.43]    [Pg.148]    [Pg.225]    [Pg.388]    [Pg.28]    [Pg.106]    [Pg.557]    [Pg.216]    [Pg.77]    [Pg.125]    [Pg.241]    [Pg.24]    [Pg.3]    [Pg.29]    [Pg.294]    [Pg.297]    [Pg.302]    [Pg.473]    [Pg.664]    [Pg.847]    [Pg.848]    [Pg.1110]    [Pg.1142]    [Pg.1204]    [Pg.1231]    [Pg.1319]    [Pg.1319]    [Pg.174]    [Pg.24]    [Pg.51]    [Pg.238]    [Pg.253]    [Pg.266]    [Pg.287]   
See also in sourсe #XX -- [ Pg.89 , Pg.90 , Pg.91 , Pg.92 , Pg.93 , Pg.94 , Pg.95 , Pg.96 , Pg.97 , Pg.98 , Pg.99 ]




SEARCH



Calmodulin

Calmodulin protein

Calmodulins

© 2024 chempedia.info