Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein reaction with amino acid ester

During enzymatic modification under appropriate reaction conditions, L-amino acids (generally in ester form) are partially covalently incorporated into the peptide chains of a protein hydrolysate. Thus these enzymatic modification reactions with amino acid enrichment would be expected to be more important for health aspects than other modification processes without covalent amino acid enrichment. [Pg.141]

Currently available proteins are all deficient to greater or lesser extent in one or more of the essential amino acids. The recently advanced plastein reaction (229) has made it possible to use protein itself as substrate and to attach amino acid esters to the protein with high efficiency. By this method, soy bean protein (which is deficient in methionine) has been improved to the extent of having covalently attached L-methionine at 11%. [Pg.296]

The ability of a metal ion to increase the rate of hydrolysis of a peptide has enormous implications in biology, and many studies have centred upon the interactions and reactions of metal complexes with proteins. However, hydrolysis is not the only reaction of this type which may be activated by chelation to a metal ion, and chelated esters are prone to attack by any reasonably strong nucleophile. For example, amides are readily prepared upon reaction of a co-ordinated amino acid ester with a nucleophilic amine (Fig. 3-11). In this case, the product is usually, but not always, the neutral chelated amide rather than a depro-tonated species. [Pg.53]

Most of the experiments on incorporating amino acid esters into proteins during the plastein reaction have been carried out with papain, indicating that it is one of the best enzymes for this purpose. Other enzymes such as chymotrypsin (40) or carboxypeptidase Y from Sac-charomyces cerevisiae (41) are potent catalysts for peptide synthesis in homogeneous systems using N-acylamino acid esters of peptides as substrates and amino acid derivatives or peptides as nucleophile components. Adding organic co-solvents favored peptide bond synthesis (42,43). [Pg.153]

Protein Hydrolysates. Instead of ethyl hippurate, a peptic hydrolysate of ovalbumin was used as substrate for the resynthesis reaction (64). This substrate (300 mg) was dissolved in water, adjusted to pH 6.0 with NaOH and to 0.9 ml with additional water. An amino acid ester was added to produce a 22.2mM solution and the mixture preincubated at 37°C for 15 min. Papain (3 mg), dissolved in 0.1M L-cysteine (0.1 ml), was combined with the above-mentioned preincubation mixture and incubation carried out at 37°C. After 2 hr, 0.1N NaOH (10 ml) was added to stop the enzymatic reaction and the resulting solution allowed to stand for 3 hr to hydrolyze completely the remaining amino acid ester as well as the ester group from the peptide product. The free amino acid produced from the base-catalyzed hydrolysis of the amino acid ester was determined with an amino acid analyzer. The amount of the amino acid incorporated was obtained by subtracting the determined value from the initial concentration of amino acid ester. The data obtained with the same L-amino acid esters as used in the model experiment (above) are plotted along the ordinate of Figure 3. An excellent correlation is found between the data from the model experiment and those from this experiment using a protein hydrolysate. In Table III data are shown for the extent of covalent incorporation after 2 hr of various amino acid ethyl esters into the protein hydrolysate. There is a close relationship between... [Pg.171]

Aso et al. [95] studied a model system in order to obtain basic information on the mechanism of amino acid incorporation during an enzymatic modification reaction in the presence of papain. They found that the amino acid ester reacted as a nucleophile in the aminolysis of the acyl-enzyme intermediate to result in the formation of new peptides. Several proteases used in enzymatic peptide bond synthesis are known to form transitory acyl-enzyme intermediates during the hydrolysis of proteins. However, the acyl groups can be transferred to other nucleophiles (amino terminals of peptides or amino acids), synthesizing new peptide bonds [71]. With full knowledge of the above-mentioned facts, covalent amino acid enrichment of proteins can result in... [Pg.141]

Functional properties of some enzymatically modified and EPM-treated products of milk proteins [136] were determined as follows. An enzymatically prehydrolyzed commercial milk protein concentrate (SR) without further hydrolysis, and casein hydrolyzed by alcalase, a-chymotrypsin, and papain, respectively, were used as substrates in the EPM reaction. The concentration of the hydrolysates was 20% w/ v in the EPM reactions. A methionine methyl ester hydrochloride/ substrate ratio of 1 5 was used for incorporating this amino acid. After incubation, the products with methionine incorporation were simultaneously dialyzed for 2 days through a cellophane membrane against distilled water. The nondialyzable fractions and the EPM products without amino acid enrichment were freeze-dried. Covalent methionine incorporation in the EPM products with amino acid enrichment was verified by exopeptidase hydrolysis of the protein chains. The functional properties of the different EPM products are summarized in Table 1. An important functional property of proteins and/or peptide mixtures is their emulsifying behavior. This is highly influenced by the molecular structure, the position and ratio of hydrophobic-hydrophilic amino acids. Emulsion activity was found to be low (34.0) for casein, and the values determined for enzyme hydrolyzed and modified products were in general even lower. The papain hydrolysate, sample H3, showed here a different behavior as well this was the one of the sample series that had the highest EAI value (43.0). The emulsion stability of the enzymatically modified products displayed tendencies quite opposite to the values of emul-... [Pg.153]

In contradiction to this, the protein biosynthesis proceeds via aminolysis of activated amino acids reactively bound to t-RNA, where the growing protein is liberated from the polymer RNA support (Fig. 3). This type of biosynthesis was imitated in the way of a drastically simplified model reaction, namely the peptide syntheses with solid phase bound activated amino acid esters [37, 38], which here are not the matter for discussion (Fig. 4). [Pg.4]

In order to produce the amphoteric protein-based surfactant, the incorporation of lipophilic amino acid ester was attempted using the one-step method of plastein reaction with papain at pH 9. In a system containing succinylated ttsi-casein as a protein substrate and luecine n-dodecyl ester as a lipophile, the peptide bond between Phe and Tyr of casein was first hydrolyzed, and this is followed by the incorporation of luecine n-dodecyl ester at the same position, forming a new C-terminus [34]. The structure of the macropeptide with respect to the distribution of hydrophilic amino acid residues is shown in Fig. 4 [29,34]. Amphiphilic structure consisting of hydrophilic protein portion and lipophilic luecine n-dodecyl ester was clearly demonstrated. [Pg.134]

Studies on the chemical aspects of penicillin allergy have shown that the penicilloyl determinant in penicillin allergy can be formed by the reaction of benzylpenicillenic acid with free functional groups in proteins, Benzylpenicillenic acid can react with SH groups of protein to form thio-esters similar to its reaction with amino groups to form amides a. Products obtained in aminolysis and enzymic hydrolysis of cephalosporins... [Pg.158]

The reaction rate is affected by, among other things, the nature of the amino acid residues. Hydrophobic amino acid residues are preferably linked together (Fig. 1.51). Incorporation of amino acid esters into protein is affected by the alkyl chain length of the ester. Short-chain alkyl esters have a low rate of incorporation, while the long-chain alkyl esters have a higher rate of incorporation. This is especially important for the incorporation of amino acids with a short side chain, such as alanine (cf. Table 1.40). [Pg.84]

Phenylalanine (Phe or F) (2-amino-3-phenyl-propanoic acid) is a neutral, aromatic amino acid with the formula HOOCCH(NH2)CH2C6H5. It is classified as nonpolar because of the hydrophobic nature of the benzyl side chain. Tyr and Phe play a significant role not only in protein structure but also as important precursors for thyroid and adrenocortical hormones as well as in the synthesis of neurotransmitters such as dopamine and noradrenaline. The genetic disorder phenylketonuria (PKU) is the inability to metabolize Phe. This is caused by a deficiency of phenylalanine hydroxylase with the result that there is an accumulation of Phe in body fluids. Individuals with this disorder are known as phenylketonurics and must abstain from consumption of Phe. A nonfood source of Phe is the artificial sweetener aspartame (L-aspartyl-L-phenylalanine methyl ester), which is metabolized by the body into several by-products including Phe. The side chain of Phe is immune from side reactions, but during catalytic hydrogenations the aromatic ring can be saturated and converted into a hexahydrophenylalanine residue. ... [Pg.673]


See other pages where Protein reaction with amino acid ester is mentioned: [Pg.199]    [Pg.449]    [Pg.129]    [Pg.317]    [Pg.333]    [Pg.221]    [Pg.59]    [Pg.124]    [Pg.200]    [Pg.45]    [Pg.447]    [Pg.132]    [Pg.24]    [Pg.41]    [Pg.197]    [Pg.430]    [Pg.2623]    [Pg.393]    [Pg.140]    [Pg.31]    [Pg.221]    [Pg.279]    [Pg.1030]    [Pg.456]    [Pg.427]    [Pg.679]    [Pg.348]    [Pg.301]    [Pg.701]    [Pg.446]    [Pg.9]    [Pg.542]    [Pg.366]    [Pg.575]    [Pg.100]    [Pg.31]    [Pg.23]    [Pg.42]   
See also in sourсe #XX -- [ Pg.67 ]




SEARCH



Amino acid ester

Amino acids reactions

Protein esters

Proteins reaction with

Reaction with amino acid esters

Reaction with amino acids

© 2024 chempedia.info