Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein dehydrogenase

Quinoprotein dehydrogenases containing PQQ or TTQ have been shown to function in various microorganisms in addition to the NAD(P)-dependent and flavo-protein dehydrogenases. The PQQ-containing dehydrogenases require Ca (or Mg) for structural as well as catalytic purposes. However, the mechanism of activation of PQQ, the substrate or the hemiketal adduct by the metal ion, is still unknown. [Pg.580]

It has already been pointed out that a great deal of intracellular biochemistry is based on cofactors, with these cofactors, in turn, often being derived from nucleotides. However, while this indirectly implies the proficiency of ancient RNA catalysts, it does not prove that such catalysts could have existed. Although there are, for example, protein dehydrogenases and esterases, there are no modem ribozymes with similar activities. Just as engineering a ribozyme self-replicase will be an experimental demonstration that life could have arose via RNA, so the production of artificial ribozymes will be a demonstration that a metabolically complex RNA world may once have existed. [Pg.659]

Schiff base fonnation, photochemistry, protein partitioning, catalysis by chymotrypsin, lipase, peroxidase, phosphatase, catalase and alcohol dehydrogenase. [Pg.2595]

The Protein Data Bank PDB ID 1A71 Colby T D Bahnson B J Chin J K Klinman J P Goldstein B M Active Site Modifications m a Double Mutant of Liver Alcohol Dehydrogenase Structural Studies of Two Enzyme Ligand Com plexes To be published... [Pg.1298]

Iron Sulfur Compounds. Many molecular compounds (18—20) are known in which iron is tetrahedraHy coordinated by a combination of thiolate and sulfide donors. Of the 10 or more stmcturaHy characterized classes of Fe—S compounds, the four shown in Figure 1 are known to occur in proteins. The mononuclear iron site REPLACE occurs in the one-iron bacterial electron-transfer protein mbredoxin. The [2Fe—2S] (10) and [4Fe—4S] (12) cubane stmctures are found in the 2-, 4-, and 8-iron ferredoxins, which are also electron-transfer proteins. The [3Fe—4S] voided cubane stmcture (11) has been found in some ferredoxins and in the inactive form of aconitase, the enzyme which catalyzes the stereospecific hydration—rehydration of citrate to isocitrate in the Krebs cycle. In addition, enzymes are known that contain either other types of iron sulfur clusters or iron sulfur clusters that include other metals. Examples include nitrogenase, which reduces N2 to NH at a MoFe Sg homocitrate cluster carbon monoxide dehydrogenase, which assembles acetyl-coenzyme A (acetyl-CoA) at a FeNiS site and hydrogenases, which catalyze the reversible reduction of protons to hydrogen gas. [Pg.442]

Gofactors. Frequendy proteins exist in their native state in association with other nonprotein molecules or cofactors, which are cmcial to their function. These may be simple metal ions, such as Fe " in hemerythrin or Ca " in calmodulin a heme group, as for the globins nucleotides, as for dehydrogenases, etc. [Pg.211]

NAD and NADP are required as redox coen2ymes by a large number of enzymes and ia particular dehydrogenases (Fig. 6). NAD" is utilized ia the catabohe oxidations of carbohydrates, proteins, and fats, whereas NADPH2 is the coenzyme for anaboHc reactions and is used ia fats and steroid biosynthesis. NADP+ is also used ia the cataboHsm of carbohydrates (2). [Pg.52]

In contrast to the nicotinamide nucleotide dehydrogenases, the prosthetic groups FMN and FAD are firmly associated with the proteins, and the flavin groups are usually only separated from the apoen2yme (protein) by acid treatment in water. However, in several covalently bound flavoproteins, the enzyme and flavin coen2ymes are covalently affixed. In these cases, the flavin groups are isolated after the proteolytic digestion of the flavoproteins. [Pg.80]

Covalently Bound Flavins. The FAD prosthetic group in mammalian succinate dehydrogenase was found to be covalently affixed to protein at the 8 a-position through the linkage of 3-position of histidine (102,103). Since then, several covalently bound riboflavins (104,105) have been found successively from the en2ymes Hsted in Table 3. The biosynthetic mechanism, however, has not been clarified. [Pg.80]

U Ryde. Molecular dynamics simulations of alcohol dehydrogenase with a four- or five-coordinate catalytic zinc ion. Proteins 21 40-56, 1995. [Pg.412]

Figure 1.9 Examples of functionally important intrinsic metal atoms in proteins, (a) The di-iron center of the enzyme ribonucleotide reductase. Two iron atoms form a redox center that produces a free radical in a nearby tyrosine side chain. The iron atoms are bridged by a glutamic acid residue and a negatively charged oxygen atom called a p-oxo bridge. The coordination of the iron atoms is completed by histidine, aspartic acid, and glutamic acid side chains as well as water molecules, (b) The catalytically active zinc atom in the enzyme alcohol dehydrogenase. The zinc atom is coordinated to the protein by one histidine and two cysteine side chains. During catalysis zinc binds an alcohol molecule in a suitable position for hydride transfer to the coenzyme moiety, a nicotinamide, [(a) Adapted from P. Nordlund et al., Nature 345 593-598, 1990.)... Figure 1.9 Examples of functionally important intrinsic metal atoms in proteins, (a) The di-iron center of the enzyme ribonucleotide reductase. Two iron atoms form a redox center that produces a free radical in a nearby tyrosine side chain. The iron atoms are bridged by a glutamic acid residue and a negatively charged oxygen atom called a p-oxo bridge. The coordination of the iron atoms is completed by histidine, aspartic acid, and glutamic acid side chains as well as water molecules, (b) The catalytically active zinc atom in the enzyme alcohol dehydrogenase. The zinc atom is coordinated to the protein by one histidine and two cysteine side chains. During catalysis zinc binds an alcohol molecule in a suitable position for hydride transfer to the coenzyme moiety, a nicotinamide, [(a) Adapted from P. Nordlund et al., Nature 345 593-598, 1990.)...
Figure 4.1 Alpha/beta domains are found in many proteins. They occur in different classes, two of which are shown here (a) a closed barrel exemplified by schematic and topological diagrams of the enzyme trlosephosphate isomerase and (b) an open twisted sheet with helices on both sides, as in the coenzymebinding domain of some dehydrogenases. Both classes are built up from p-a-p motifs that are linked such that the p strands are parallel. Rectangles represent a helices, and arrows represent p strands in the topological diagrams, [(a) Adapted from J. Richardson, (b) Adapted from B. Furugren.j... Figure 4.1 Alpha/beta domains are found in many proteins. They occur in different classes, two of which are shown here (a) a closed barrel exemplified by schematic and topological diagrams of the enzyme trlosephosphate isomerase and (b) an open twisted sheet with helices on both sides, as in the coenzymebinding domain of some dehydrogenases. Both classes are built up from p-a-p motifs that are linked such that the p strands are parallel. Rectangles represent a helices, and arrows represent p strands in the topological diagrams, [(a) Adapted from J. Richardson, (b) Adapted from B. Furugren.j...
ADH Horse liver alcohol dehydrogenase, an enzyme dimer of identical 374 amino acid polypeptide chains. The amino acid composition of ADH is reasonably representative of die norm for water-solnble proteins. [Pg.114]

Example of a Protein Purification Scheme Purification of the Enzyme Xanthine Dehydrogenase from a Eungus... [Pg.130]

The specific activity is die total activity of die fracdon divided by the total protein in die fracdon. This value gives an indication of die increase in purity attained during die course of the purification as die samples become enriched for xandiine dehydrogenase protein. [Pg.130]

Most purification procedures for a particular protein are developed in an empirical manner, the overriding principle being purification of the protein to a homogeneous state with acceptable yield. Table 5.5 presents a summary of a purification scheme for a selected protein. Note that the specific activity of the protein (the enzyme xanthine dehydrogenase) in the immuno-affinity purified fraction (fraction 5) has been increased 152/0.108, or 1407 times the specific activity in the crude extract (fraction 1). Thus, xanthine dehydrogenase in fraction 5 versus fraction 1 is enriched more than 1400-fold by the purification procedure. [Pg.130]

The substrates of catabolism—proteins, carbohydrates, and lipids—are good sources of chemical energy because the carbon atoms in these molecules are in a relatively reduced state (Figure 18.9). In the oxidative reactions of catabolism, reducing equivalents are released from these substrates, often in the form of hydride ions (a proton coupled with two electrons, H ). These hydride ions are transferred in enzymatic dehydrogenase reactions from the substrates... [Pg.577]

FIGURE 18.36 The incorporation of retinal into the light-sensitive protein rhodopsin involves several steps. All- ram-retinol is oxidized by retinol dehydrogenase and then iso-merized to ll-cis-retinal, which forms a Schiff base linkage with opsin to form light-sensitive rhodopsin. [Pg.604]

Wachtershanser has also suggested that early metabolic processes first occurred on the surface of pyrite and other related mineral materials. The iron-sulfur chemistry that prevailed on these mineral surfaces may have influenced the evolution of the iron-sulfur proteins that control and catalyze many reactions in modern pathways (including the succinate dehydrogenase and aconitase reactions of the TCA cycle). [Pg.664]

The serine residue of isocitrate dehydrogenase that is phos-phorylated by protein kinase lies within the active site of the enzyme. This situation contrasts with most other examples of covalent modification by protein phosphorylation, where the phosphorylation occurs at a site remote from the active site. What direct effect do you think such active-site phosphorylation might have on the catalytic activity of isocitrate dehydrogenase (See Barford, D., 1991. Molecular mechanisms for the control of enzymic activity by protein phosphorylation. Bioehimiea et Biophysiea Acta 1133 55-62.)... [Pg.672]

The space inside the inner mitochondrial membrane is called the matrix, and it contains most of the enzymes of the TCA cycle and fatty acid oxidation. (An important exception, succinate dehydrogenase of the TCA cycle, is located in the inner membrane itself.) In addition, mitochondria contain circular DNA molecules, along with ribosomes and the enzymes required to synthesize proteins coded within the mitochondrial genome. Although some of the mitochondrial proteins are made this way, most are encoded by nuclear DNA and synthesized by cytosolic ribosomes. [Pg.675]

Complex II is perhaps better known by its other name—succinate dehydrogenase, the only TCA cycle enzyme that is an integral membrane protein in the inner mitochondrial membrane. This enzyme has a mass of approximately 100 to 140 kD and is composed of four subunits two Fe-S proteins of masses 70 kD and 27 kD, and two other peptides of masses 15 kD and 13 kD. Also known as flavoprotein 2 (FP2), it contains an FAD covalently bound to a histidine residue (see Figure 20.15), and three Fe-S centers a 4Fe-4S cluster, a 3Fe-4S cluster, and a 2Fe-2S cluster. When succinate is converted to fumarate in the TCA cycle, concomitant reduction of bound FAD to FADHg occurs in succinate dehydrogenase. This FADHg transfers its electrons immediately to Fe-S centers, which pass them on to UQ. Electron flow from succinate to UQ,... [Pg.683]


See other pages where Protein dehydrogenase is mentioned: [Pg.552]    [Pg.552]    [Pg.132]    [Pg.552]    [Pg.552]    [Pg.132]    [Pg.2502]    [Pg.98]    [Pg.200]    [Pg.44]    [Pg.383]    [Pg.312]    [Pg.104]    [Pg.538]    [Pg.47]    [Pg.348]    [Pg.113]    [Pg.120]    [Pg.130]    [Pg.170]    [Pg.189]    [Pg.200]    [Pg.509]    [Pg.654]    [Pg.654]    [Pg.667]    [Pg.681]    [Pg.784]    [Pg.99]    [Pg.131]   
See also in sourсe #XX -- [ Pg.116 ]




SEARCH



Dehydrogenases proteins

Dehydrogenases proteins

Iron-sulfur proteins formate dehydrogenase

Iron-sulfur proteins succinate dehydrogenase

Methylamine dehydrogenase protein complex

Protein engineering dehydrogenase

Protein function evolution dehydrogenase

Protein glyceraldehyde-3-phosphate dehydrogenase

Protein lactate dehydrogenase

© 2024 chempedia.info