Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein a-thioesters

Harnessing protein splicing, researchers now have the ability to generate recombinant protein a-thioesters through the thiolysis of an appropriately mutated protein-intein fusion. In principle, this means that synthetic and recombinant building blocks can be fused in a semisynthetic version of NCL. Such an approach was first reported in 1998 and has been named expressed protein ligation [8],... [Pg.542]

Fig. 3 Protein splicing mechanism of the Mxe GyrA intein. The asparagine dashed bo)(j is essential for cleavage, thus, replaced by an alanine residue in engineered intein suitable for protein a-thioester preparation... Fig. 3 Protein splicing mechanism of the Mxe GyrA intein. The asparagine dashed bo)(j is essential for cleavage, thus, replaced by an alanine residue in engineered intein suitable for protein a-thioester preparation...
Formation of malonyl coenzyme A is followed by a nucleophilic acyl substitution which transfers the malonyl group to the acyl carrier protein as a thioester... [Pg.1075]

Chemists and biochemists And it convenient to divide the principal organic substances present m cells into four mam groups carbohydrates proteins nucleic acids and lipids Structural differences separate carbo hydrates from proteins and both of these are structurally distinct from nucleic acids Lipids on the other hand are characterized by a physical property their solubility m nonpolar solvents rather than by their structure In this chapter we have examined lipid molecules that share a common biosynthetic origin m that all their carbons are derived from acetic acid (acetate) The form m which acetate occurs m many of these processes is a thioester called acetyl coenzyme A... [Pg.1101]

In bacteria, ACP is a small protein of 77 residues that transports an acyl group from enzyme to enzyme. In vertebrates, however, ACP appears to be a long arm on a multienzyme synthase complex, whose apparent function is to shepherd an acyl group from site to site within the complex. As in acetyl CoA, the acyl group in acetyl ACP is linked by a thioester bond to the sulfur atom of phosphopantetheine. The phosphopantetheine is in turn linked to ACP through the side-chain -OH group of a serine residue in the enzyme. [Pg.1140]

Figure29-1. Partial reactions in the attachment of ubiquitin (UB) to proteins. (1) The terminal COOH of ubiquitin forms a thioester bond with an -SH of E, in a reaction driven by conversion of ATP to AMP and PP. Subsequent hydrolysis of PP by pyrophosphatase ensures that reaction 1 will proceed readily. (2) A thioester exchange reaction transfers activated ubiquitin to Ej. (3) E3 catalyzes transfer of ubiquitin to e-amino groups of lysyl residues of target proteins. Figure29-1. Partial reactions in the attachment of ubiquitin (UB) to proteins. (1) The terminal COOH of ubiquitin forms a thioester bond with an -SH of E, in a reaction driven by conversion of ATP to AMP and PP. Subsequent hydrolysis of PP by pyrophosphatase ensures that reaction 1 will proceed readily. (2) A thioester exchange reaction transfers activated ubiquitin to Ej. (3) E3 catalyzes transfer of ubiquitin to e-amino groups of lysyl residues of target proteins.
Figure 17.13 Expressed proteins containing a thioester intein tag can be specifically modified using a cysteine-alkyne derivative by transthioesterification followed by an internal S - N shift. Figure 17.13 Expressed proteins containing a thioester intein tag can be specifically modified using a cysteine-alkyne derivative by transthioesterification followed by an internal S - N shift.
Figure 17.14 An expressed protein containing a thioester intein tag that was subsequently modified by native chemical ligation to contain an alkyne group then can be labeled using an azido-fluorescein probe by the click chemistry reaction in the presence of Cu1+. Figure 17.14 An expressed protein containing a thioester intein tag that was subsequently modified by native chemical ligation to contain an alkyne group then can be labeled using an azido-fluorescein probe by the click chemistry reaction in the presence of Cu1+.
Figure 17.28 EPL reactions can be used to couple a fusion protein to a surface containing a thioester derivative. After cells are grown and the fusion protein expressed, a pH and temperature shift causes intein cleavage with release of the expressed protein with an N-terminal cysteine residue. Reaction with the thioester surface results in a native chemical ligation reaction that forms an amide bond linkage with the expressed protein. Figure 17.28 EPL reactions can be used to couple a fusion protein to a surface containing a thioester derivative. After cells are grown and the fusion protein expressed, a pH and temperature shift causes intein cleavage with release of the expressed protein with an N-terminal cysteine residue. Reaction with the thioester surface results in a native chemical ligation reaction that forms an amide bond linkage with the expressed protein.
Figure 17.29 An expressed protein containing a mutant intein segment can undergo self cleavage to form an N-terminal cysteine residue, which then can be reacted with a thioester probe to label specifically the protein via an amide bond. Figure 17.29 An expressed protein containing a mutant intein segment can undergo self cleavage to form an N-terminal cysteine residue, which then can be reacted with a thioester probe to label specifically the protein via an amide bond.
Thioesters play a paramount biochemical role in the metabolism of fatty acids and lipids. Indeed, fatty acyl-coenzyme A thioesters are pivotal in fatty acid anabolism and catabolism, in protein acylation, and in the synthesis of triacylglycerols, phospholipids and cholesterol esters [145], It is in these reactions that the peculiar reactivity of thioesters is of such significance. Many hydrolases, and mainly mitochondrial thiolester hydrolases (EC 3.1.2), are able to cleave thioesters. In addition, cholinesterases and carboxylesterases show some activity, but this is not a constant property of these enzymes since, for example, carboxylesterases from human monocytes were found to be inactive toward some endogenous thioesters [35] [146], In contrast, allococaine benzoyl thioester was found to be a good substrate of pig liver esterase, human and mouse butyrylcholinesterase, and mouse acetylcholinesterase [147],... [Pg.416]

Earlier in this chapter, it was mentioned that many of the nonprotein amino acids are components of nonribosomal peptides. During such a biosynthesis, the peptide is attached to a carrier protein through a thioester bond, until chain termination occurs and the final product is released. The carrier protein is posttranslationally modified by the attachment of a phosphopantetheinyl group from coenzyme A. This step gives rise to the active carrier protein with a phosphopantetheine arm upon which amino acids are added to during NRPS. As an example, loading of isoleucine onto the carrier protein is depicted below (Scheme 5). Further details about nonribosomal peptide syntheses and enzymatic reactions can be found in Chapter 5.19. [Pg.11]

Fig. 1. A schematic diagram outlining the hierarchic structure of the ubiquitin system. In an ATP-dependent manner a thioester bond is formed between the C-terminus of ubiquitin and an internal cystein residue of the ubiquitin-activating enzyme. Subsequently, ubiquitin is transferred to a member of the family of ubiquitin-conjugating enzymes, which are also able to form a thioester bond with ubiquitin. The third class of enzymes, the ubiquitin ligases, direct ubiquitin to the proteolytic substrates. Different families of this class of enzymes are known, some of which are also able to form a thioester intermediate with ubiquitin (HECT-domain ligases). The final ubiquitin-substrate linkage is an isopeptide bond between the C-terminus of ubiquitin and internal lysine residues in the substrate proteins... Fig. 1. A schematic diagram outlining the hierarchic structure of the ubiquitin system. In an ATP-dependent manner a thioester bond is formed between the C-terminus of ubiquitin and an internal cystein residue of the ubiquitin-activating enzyme. Subsequently, ubiquitin is transferred to a member of the family of ubiquitin-conjugating enzymes, which are also able to form a thioester bond with ubiquitin. The third class of enzymes, the ubiquitin ligases, direct ubiquitin to the proteolytic substrates. Different families of this class of enzymes are known, some of which are also able to form a thioester intermediate with ubiquitin (HECT-domain ligases). The final ubiquitin-substrate linkage is an isopeptide bond between the C-terminus of ubiquitin and internal lysine residues in the substrate proteins...

See other pages where Protein a-thioesters is mentioned: [Pg.821]    [Pg.822]    [Pg.540]    [Pg.542]    [Pg.46]    [Pg.106]    [Pg.821]    [Pg.822]    [Pg.540]    [Pg.542]    [Pg.46]    [Pg.106]    [Pg.279]    [Pg.456]    [Pg.496]    [Pg.1164]    [Pg.1263]    [Pg.162]    [Pg.300]    [Pg.508]    [Pg.685]    [Pg.704]    [Pg.46]    [Pg.424]    [Pg.150]    [Pg.13]    [Pg.56]    [Pg.21]    [Pg.22]    [Pg.32]    [Pg.40]    [Pg.135]    [Pg.158]    [Pg.184]    [Pg.535]    [Pg.538]    [Pg.572]    [Pg.704]    [Pg.13]    [Pg.104]   
See also in sourсe #XX -- [ Pg.542 ]




SEARCH



Thioester

© 2024 chempedia.info