Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

2-propanol, transfer hydrogenation

In 2-propanoI, the quantum yield for photolytic conversion of benzophenone to the coupled reduction product is 2.0. The reason is that the radical remaining after abstraction of a hydrogen atom from 2-propanol transfers a hydrogen atom to ground-state benzophenone in a nonphotochemical reaction. Because of this process, two molecules of benzophenone are reduced for each one that is photoexcited ... [Pg.755]

Transfer hydrogenation in the alcohol-ketone system on metal catalysts was investigated by Patterson et al. In particular, by studying the reaction between 2-propanol and butanone on Cu they concluded that it must be a direct surface reaction (11), the mechanism being essentially a proton transfer in the adsorbed phase (Scheme 2). [Pg.298]

Pioneering studies on a different class of transfer hydrogenation catalysts were carried out by Henbest et al. in 1964 [15]. These authors reported the reduction of cyclohexanone (4) to cyclohexanol (5) in aqueous 2-propanol using chloroiridic acid (H2IrCl6) (6) as catalyst (Scheme 20.2). In the initial experiments, turnover frequencies (TOF) of 200 h 1 were reported. [Pg.586]

Transfer hydrogenations of carbonyl compounds are often conducted using 2-propanol as the hydrogen donor. One advantage of this compound is that it can be used simultaneously as a solvent. A large excess of the hydrogen donor shifts the redox equilibrium towards the desired product (see also Section 20.3.1). [Pg.588]

In transfer hydrogenation with 2-propanol, the chloride ion in a Wilkinson-type catalyst (18) is rapidly replaced by an alkoxide (Scheme 20.9). / -Elimination then yields the reactive 16-electron metal monohydride species (20). The ketone substrate (10) substitutes one of the ligands and coordinates to the catalytic center to give complex 21 upon which an insertion into the metal hydride bond takes place. The formed metal alkoxide (22) can undergo a ligand exchange with the hydride donor present in the reaction mixture, liberating the product (15). [Pg.590]

Alcohols have always been the major group of hydrogen donors. Indeed, they are the only hydrogen donors that can be used in Meerwein-Ponndorf-Verley (MPV) reductions. 2-Propanol (16) is most commonly used both in MPV reductions and in transition metal-catalyzed transfer hydrogenations. It is generally available and cheap, and its oxidation product, acetone (14), is nontoxic and can usually be removed readily from the reaction mixture by distillation. This may have the additional advantage that the redox equilibrium is shifted even more into the direction of the alcohol. As a result of sigma inductive electronic ef-... [Pg.598]

Transition-metal catalysts are, in general, more active than the MPVO catalysts in the reduction of ketones via hydrogen transfer. Especially, upon the introduction of a small amount of base into the reaction mixture, TOFs of transition-metal catalysts are typically five- to 10-fold higher than those of MPVO catalysts (see Table 20.7, MPVO catalysts entries 1-20, transition-metal catalysts entries 21-53). The transition-metal catalysts are less sensitive to moisture than MPVO catalysts. Transition metal-catalyzed reactions are frequently carried out in 2-propanol/water mixtures. Successful transition-metal catalysts for transfer hydrogenations are based not only on iridium, rhodium or ruthenium ions but also on nickel [93], rhenium [94] and osmium [95]. It has been reported that... [Pg.602]

Evans et al.106 report an asymmetric transfer hydrogenation of ketones using samarium(III) complex (108) as the catalyst at ambient temperature in 2-propanol. The products showed ee comparable with those obtained through enantioselective borane reduction (Scheme 6-48). [Pg.377]

Increasing effort has been applied to develope asymmetric transfer hydrogenations for reducing ketones to alcohols because the reaction is simple to perform and does not require the use of reactive metal hydrides or hydrogen. Ruthenium-catalyzed hydrogen transfer from 2-propanol to ketones is an efficient method for the preparation of secondary alcohols. [Pg.377]

The procedure is very easy to reproduce and the asymmetric transfer hydrogenation may be applied to a wide range of aromatic ketones. Table 9.3 gives different substrates that can be reduced with the Ru(II)-(2-azanorbornylmetha-nol) complex in Ao-propanol... [Pg.134]

The efficiency of nitrobenzene photoreduction may be increased remarkably in 2-propanol/hydrochloric acid mixtures. In 50% 2-propanol/water containing 6 moles l i HCl, acetone and a complex mixture of chlorinated reduction products are formed i ). Both HCl and 2-propanol (as hydrogen source) are needed. When sulfuric acid is substituted for HCl, enhanced photoreduction does not occtu . When using mixtures of HCl and LiCl to maintain a constant chloride concentration (6 M) and vary [H+], a constant disappearance quantum yield 366 =0.15 is found within the [H+]-range 0.05—6 moles l i. This strongly suggests that chloride ions play an essential role, probably via electron transfer to 3(n, tt )-nitrobenzene i > [Eq. (1)], but it is also evident from the data presented that the presence of add is probably important in subsequent steps, [Eq. (3)]. [Pg.53]

Remarkably, complex 25 was also able to reduce CO2 by transfer hydrogenation in 2-propanol [28]. While there have been many reports using H2 to reduce CO2, the work of Peris and coworkers is the only example of a hydrogen transfer reaction to reduce CO2 with 2-propanol [29]. The reduction is run in the presence of KOH,... [Pg.83]

The treatment of [Cp MCl2]2 (M = Rh and Ir) with (S,S)-TsDPEN gave chiral Cp Rh and Cp Ir complexes (12a and 12b Scheme 5.9). An asymmetric transfer hydrogenation of aromatic ketones using complex 12 was carried out in 2-propanol in the presence of aqueous KOH (1 equiv.) the results obtained are summarized in Table 5.4. In all of the reactions, the (S)-alcohols were obtained with more than 80% enantiomeric excess (ee) and in moderate to excellent yields. The rhodium catalyst 12a was shown to be considerably more active than the iridium catalyst... [Pg.114]

Table 5.5 Asymmetric transfer hydrogenation of aromatic ketones catalyzed by preformed chiral catalysts and KO Bu system in 2-propanol. ... Table 5.5 Asymmetric transfer hydrogenation of aromatic ketones catalyzed by preformed chiral catalysts and KO Bu system in 2-propanol. ...
Figure 1.25 exemplifies the strucmres of certain efficient precatalysts for asymmetric transfer hydrogenation of ketones. Precatalysts C1-C3 use the NH effect described above. A turnover frequency, defined as moles of product per mol of catalyst per hour, of 30,000 h is achieved by using of C2 and an alkaline base in 2-propanol. A Rh complex C3 is an isolobal to the corresponding arene-Ru complex (see Figure 1.23). The Ru complexes C4 " and C5 without NH group in ligand catalyze the reaction by different mechanisms. A higher than 90% optical yield is achieved by using C5 in reduction of certain aliphatic ketones. Figure 1.25 exemplifies the strucmres of certain efficient precatalysts for asymmetric transfer hydrogenation of ketones. Precatalysts C1-C3 use the NH effect described above. A turnover frequency, defined as moles of product per mol of catalyst per hour, of 30,000 h is achieved by using of C2 and an alkaline base in 2-propanol. A Rh complex C3 is an isolobal to the corresponding arene-Ru complex (see Figure 1.23). The Ru complexes C4 " and C5 without NH group in ligand catalyze the reaction by different mechanisms. A higher than 90% optical yield is achieved by using C5 in reduction of certain aliphatic ketones.
The transfer hydrogenation of a-keto- S -unsaturated esters, catalyzed by Ru(p-cymene)(TsDPEN) (TsDPEN monotosylated l,2-diphenylethylene-l,2-dia-mine) with 2-propanol as the hydrogen source, has been developed as an efficient method for the preparation of a-hydroxy-)S, y-unsaturated esters or acids. [Pg.136]

A simple system, NiBr2 in alkaline 2-propanol, has been reported to exhibit high activity in the transfer hydrogenation of 1-octene.435... [Pg.673]

The rate constants of electron transfer with amines are much larger than those of hydrogen atom transfer, e.g. in the case of benzophenone, by over three orders of magnitude between triethylamine and 2-propanol. However, hydrogen atom transfer leads in most cases to irreversible reactions, but electron transfer is often reversible through the recombination of the ions... [Pg.135]

Excellent enantioselectivity was achieved for the transfer hydrogenation of pinacolone by using (S)-25a as a catalyst with 2-propanol in the presence of (CH3)2CHONa to give the S alcohol in >99% ee (Scheme 28) [90], 2,2-Dimethyl-cyclohexanone was reduced with the same catalyst with 98% optical yield. Reduction of cyclohexyl methyl ketone with (S)-25b gave the S alcohol in 66% ee. [Pg.32]


See other pages where 2-propanol, transfer hydrogenation is mentioned: [Pg.76]    [Pg.140]    [Pg.113]    [Pg.477]    [Pg.48]    [Pg.151]    [Pg.378]    [Pg.381]    [Pg.127]    [Pg.78]    [Pg.84]    [Pg.87]    [Pg.87]    [Pg.50]    [Pg.112]    [Pg.112]    [Pg.113]    [Pg.117]    [Pg.20]    [Pg.21]    [Pg.113]    [Pg.265]    [Pg.265]    [Pg.27]    [Pg.28]    [Pg.29]    [Pg.30]    [Pg.32]   
See also in sourсe #XX -- [ Pg.123 ]

See also in sourсe #XX -- [ Pg.123 ]




SEARCH



2-Propanol, hydrogen transfer

2-Propanol, hydrogen transfer

2-propanol, transfer hydrogenation with

© 2024 chempedia.info