Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Promoters hydrogen fluoride

The combination of alkali metal acid fluorides and porous aluminum fluoride IS a stable, solid, and efficient substitute for anhydrous hydrogen fluoride for promoting the ring-opening reactions of simple aliphatic oxiranes to give the fluorohydrins under sonication [/5] (equations 14 and 15)... [Pg.204]

Hydrogen fluoride reacts witlr metal carbonates, oxides, and hydroxides. Accumulation of these fluoride compounds can render valves and other close-fitting moving parts inoperable in a process system, causing possible equipment or process failures. Hydrogen fluoride also attacks glass, silicate ceramics, leather, natural rubber, and wood, but does not promote their combustion. [Pg.271]

Numerous Lewis acids promote the formation of nitronium ions when in the presence of nitric acid. Nitric acid-boron trifluoride, and the nitric acid-hydrogen fluoride-boron trifluoride reagents described by Olah are practical nitrating agents the latter provides a convenient preparation of nitronium tetrafluoroborate. Olah reports that nitric acid-magic acid (FSOsH-SbFs) is extremely effective for the polynitration of aromatic substrates. [Pg.140]

In comparison to PTFE, PVF is easily processable using a variety of techniques used for most thermoplastic materials. It offers good flame retardancy, presumably due to the formation of hydrogen fluoride that assists in the control of the fire. Thermally induced formation of hydrogen fluoride is also a negative factor because of its toxicity. As in the case of PVC, elimination of the hydrogen halide (HF) promotes formation of aromatic polycyclic products that are toxic. [Pg.191]

The polymerization of olefins in the presence of halides such as aluminum chloride and boron fluoride but in the absence of hydrogen halide promoter may also be described in terms of the complex carbonium ion formed by addition of the metal halide (without hydrogen chloride or hydrogen fluoride) to the olefin (cf. p. 28). These carbonium ions are apparently more stable than those of the purely hydrocarbon type the reaction resulting in their formation is less readily reversed than is that of the addition of a proton to an olefin (Whitmore, 18). Polymerization in the presence of such a complex catalyst, may be indicated as follows (cf. Hunter and Yohe, 17) ... [Pg.67]

The use of additional substances to increase the activity of a catalyst is a well known phenomenon. Hydrogen chloride or traces of water are known to promote aluminum chloride catalyzed reactions. In the same way the reaction of isoparaffins with olefins has been shown to be catalyzed by boron trifluoride in the presence of nickel powder and with water as the promoter (Ipatieff and Grosse, 76). Hydrogen fluoride can take the place of the water and thus serve as the promoter. [Pg.223]

Both aromatic and aliphatic fluoroformates 7 can be readily prepared from phenols or alcohols and carbonyl difluoride and treated with sulfur tetrafluoride without isolation. Hydrogen fluoride evolved in the reaction of hydroxy compounds with carbonyl di fluoride serves as a catalyst for the consecutive reaction with sulfur tetrafluoride.15<)-162 This provides a general, convenient, direct synthesis of aryl and alkyl trifluoromethyl ethers 5 from phenols and alcohols. When the intermediate fluoroformate 7 is isolated prior to treatment with sulfur tetrafluoride, at least one mole equivalent of hydrogen fluoride is necessary to promote the fluorination reaction. 159 163 Representative examples of the conversion of hydroxy compounds 6 into trifluoromethyl ethers 5 via intermediate fluoroformates 7 are given (for other examples 7 -> 5, see Houben-Weyl, Vol. E4, pp 628. 629). [Pg.372]

Aryltriazenes can also be decomposed by hydrogen fluoride in organic solution after extraction from their aqueous mother phase. In this case, hydrogen fluoride can be used in small excess but the nature of the solvent is crucial for example, tetrahydrofuran gives complex mixtures, dichloromethane promotes radical reactions (dimerizations, reductions) and acetic acid favors triazene decomposition before fluorination. Aromatic and haloaromatic compounds seem to be the best solvents.283 Such a technique, especially suited for the rapid introduction of an 18F atom, has been employed to produce [ 8F]haloperidol (3), the specific receptors of which have been localized in the brain by positron emission transaxial tomography.298... [Pg.727]

Like fluorodediazoniation, the decomposition of aryltriazenes in hydrogen fluoride/pyridine mixtures is promoted by UV irradiation, e.g. compare the thermal and photolytic formation of 4-fluorophenol (10).89... [Pg.728]

One-step electrophilic hydroxylation of aromatic compounds using various peroxide reagents in the presence of acid catalysts has been achieved. The systems studied include hydrogen peroxide in the presence of sulfuric acid,766 hydrogen fluoride,767 Lewis acids,768 769 and pyridinium poly(hydrogen fluoride).770 Lewis acid-promoted electrophilic hydroxylation with peracids,771,772 di-tcrt-butyl peroxide,773 and diisopropyl peroxydicarbonate774 775 were also described. A common feature of these reagents is the formation of monohydroxylated compounds in low yields. [Pg.494]

Generally, as discussed previously, the mechanism involved in the cross-linking of fluoroelastomers is the removal of hydrogen fluoride to generate a cure site that then reacts with diamine [39], bisphenol [40], or organic peroxides [41] that promote a radical cure by hydrogen or bromine extraction. Preferred amines have been blocked diamines such as hexamethylene carbamate (Diak No. 1) or bis(cinnamylidene) hexamethylene diamine (Diak No. 3). Preferred phenols are hydroquinone and the bisphenols such as 4,4 -isopro-pylidene bisphenol or the corresponding hexafluoro-derivative bisphenol AF. [Pg.103]


See other pages where Promoters hydrogen fluoride is mentioned: [Pg.496]    [Pg.129]    [Pg.159]    [Pg.271]    [Pg.680]    [Pg.58]    [Pg.198]    [Pg.204]    [Pg.223]    [Pg.224]    [Pg.227]    [Pg.58]    [Pg.138]    [Pg.159]    [Pg.118]    [Pg.244]    [Pg.395]    [Pg.216]    [Pg.216]    [Pg.238]    [Pg.724]    [Pg.159]    [Pg.132]    [Pg.279]    [Pg.271]    [Pg.32]    [Pg.789]    [Pg.73]    [Pg.157]    [Pg.252]    [Pg.136]    [Pg.129]    [Pg.94]    [Pg.367]    [Pg.271]   
See also in sourсe #XX -- [ Pg.31 , Pg.54 ]




SEARCH



Fluoride-promoted

© 2024 chempedia.info