Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Products alkylation process chemistry

In current processes that use either sulfuric acid or HF, isobutane in large excess and olefins are introduced as liquids into the reactor. After completion of the reactions, the liquid-liquid dispersions are separated by decanting. The alkylate product is separated by distillation or stripping from the unreacted isobutane, which is recirculated to the reactor. This entry reviews the chemistry, physicochemical phenomena, current processes, and finally suggests methods to improve significantly the alkylation process. [Pg.57]

Environmental Considerations. Environmental problems in Ziegler chemistry alcohol processes are not severe. A small quantity of aluminum alkyl wastes is usually produced and represents the most significant disposal problem. It can be handled by controlled hydrolysis and separate disposal of the aqueous and organic streams. Organic by-products produced in chain growth and hydrolysis can be cleanly burned. Wastewater streams must be monitored for dissolved carbon, such as short-chain alcohols, and treated conventionally when necessary. [Pg.457]

Negishi E, Tan Z (2005) Diastereoselective, Enantioselective, and Regioselective Carbo-alumination Reactions Catalyzed by Zirconocene Derivatives. 8 139-176 Netherton M, Fu GC (2005)Pa]ladium-catalyzed Cross-Coupling Reactions of Unactivated Alkyl Electrophiles with Organometallic Compounds. 14 85-108 Nicolaou KC, King NP, He Y (1998) Ring-Closing Metathesis in the Synthesis of EpothUones and Polyether Natmal Products. 1 73-104 Nishiyama H (2004) Cyclopropanation with Ruthenium Catalysts. 11 81-92 Noels A, Demonceau A, Delaude L (2004) Ruthenium Promoted Catalysed Radical Processes toward Fine Chemistry. 11 155-171... [Pg.293]

Owing to its excellent thermal and mechanical stability and its rich chemistry, alumina is the most widely used support in catalysis. Although aluminium oxide exists in various structures, only three phases are of interest, namely the nonporous, crys-tallographically ordered a-Al203, and the porous amorphous t]- and y-Al203. The latter is also used as a catalyst by itself, for example in the production of elemental sulfur from H2S (the Claus process), the alkylation of phenol or the dehydration of formic acid. [Pg.192]

The aforementioned observations have significant mechanistic implications. As illustrated in Eqs. 6.2—6.4, in the chemistry of zirconocene—alkene complexes derived from longer chain alkylmagnesium halides, several additional selectivity issues present themselves. (1) The derived transition metal—alkene complex can exist in two diastereomeric forms, exemplified in Eqs. 6.2 and 6.3 by (R)-8 anti and syn reaction through these stereoisomeric complexes can lead to the formation of different product diastereomers (compare Eqs. 6.2 and 6.3, or Eqs. 6.3 and 6.4). The data in Table 6.2 indicate that the mode of addition shown in Eq. 6.2 is preferred. (2) As illustrated in Eqs. 6.3 and 6.4, the carbomagnesation process can afford either the n-alkyl or the branched product. Alkene substrate insertion from the more substituted front of the zirconocene—alkene system affords the branched isomer (Eq. 6.3), whereas reaction from the less substituted end of the (ebthi)Zr—alkene system leads to the formation of the straight-chain product (Eq. 6.4). The results shown in Table 6.2 indicate that, depending on the reaction conditions, products derived from the two isomeric metallacyclopentane formations can be formed competitively. [Pg.184]

The example of the first category is the formation of alkyl- and arylchlorosilanes in the so-called direct process (DP). The process was discovered over 60 years ago by Rochow in the United States, and, independently, by Muller in Germany, and it is still the most important reaction in organosilicon chemistry. In fact, it is at the very basis of the silicone industry, being the primary source of organochlorosilane precursors (mostly methylchlorosilanes, comprising over 90% of the total) in the production of silicone oligomers and polymers. [Pg.653]

Cumene was originally produced with SPA- [57], then FAU- or BEA-based catalysts, and most recently MWW. While most industrial processes use MWW-based catalysts [58], Dow and KeUog co-developed a dealuminated MOR based process called 3-DDM [59]. With each new process generation, conversion and selectivity to cumene has increased. These processes and the chemistry behind them are covered in Section 15.4. As the use of zeoHtes for alkylation reactions in industry increased, so did the study of the reaction and how the zeoHte topology affects the mechanism and selectivity to products, so that now many zeotypes are tested for aromatic alkylation as a way of figuring out a new structure s reaction pattern. Therefore, many zeotypes have been used to catalyze aromatic alkylation (Tables 12.9-12.11). [Pg.369]

The introduction of two [5,6]-aza bridges shows a remarkable regioselectivity even if segregated alkylazides are used [17]. The diazabishomofullerenes 23 (Scheme 10.3) are by far the major products and only traces of one other bisadduct with unidentified structure are found if, for example, a twofold excess of azide is allowed to react with CgQ at elevated temperatures [17]. To obtain clues on the mechanism of this most regioselective bisadduct formation process in fullerene chemistry a concentrated solution of an azahomofullerene precursor 24 was treated with an alkyl azide at room temperature. [Pg.306]

The transition metal based catalytic species derived from hydrogen peroxide or alkyl hydroperoxides are currently regarded as the most active oxidants for the majority of inorganic and organic substrates " An understanding of the mechanism of these processes is therefore a crucial point in the chemistry of catalytic oxidations. This knowledge allows one to predict not only the nature of the products in a given process, but also the stereochemical outcome in asymmetric reactions. [Pg.1072]

It should be emphasized that virmaUy all of the above discussion is based on biomimetic chemistry, where the Fe(II) source varies from salts such FeS04 to the more reactive FeCla-THaO as well as heme mimetics (TPP) and ester hematin variants. When heme models are used, since porphyrin alkylation is a favoured process, end-product distributions of products can be very different from when a free ferrous ion source is employed. Furthermore, solvent has been shown to have a profound effect on the rate of reaction and product distributions obtained in iron-mediated endoperoxide degradation. Thus all of these studies are truly only approximate models of the actual events within the malaria parasites. Future work is needed to correlate the results of biomimetic chemistry with the actual situation within the parasite. In general, most workers do accept the role of carbon-centred radicals in mediating the antimalarial activity of the endoperoxides, but the key information defining (a) the chemical mechanism by which these species alkylate proteins and (b) the basis for the high parasite selectivity remains to be unequivocally established. [Pg.1309]


See other pages where Products alkylation process chemistry is mentioned: [Pg.134]    [Pg.239]    [Pg.18]    [Pg.11]    [Pg.131]    [Pg.258]    [Pg.32]    [Pg.224]    [Pg.13]    [Pg.13]    [Pg.132]    [Pg.32]    [Pg.168]    [Pg.524]    [Pg.76]    [Pg.551]    [Pg.391]    [Pg.89]    [Pg.70]    [Pg.551]    [Pg.5]    [Pg.68]    [Pg.355]    [Pg.223]    [Pg.262]    [Pg.539]    [Pg.349]    [Pg.16]    [Pg.471]    [Pg.17]    [Pg.654]    [Pg.162]    [Pg.666]    [Pg.258]    [Pg.40]    [Pg.77]    [Pg.470]    [Pg.98]    [Pg.3]    [Pg.309]   
See also in sourсe #XX -- [ Pg.508 , Pg.512 ]




SEARCH



Alkyl process

Alkylate production

Alkylation chemistry

Alkylation process chemistry

Alkylation products

Process chemistry

© 2024 chempedia.info