Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Product chemoselectivity

The MTO-catalysed oxidation of silanes to silanols (data reported in Table 10) and epoxidation of olefins (data reported in Table 11) by aqueous H2O2 proceeds in high yields and excellent product chemoselectivities (no siloxane and no diol are observed as byproducts) in the presence of zeolite-Y [64], which are better than those obtained under homogeneous conditions (data in Table 11). For example, only 26% of PhMe2SiH is converted with as low as 20% selectivity towards silanol in 24 h when reacted with 85% H2O2 and catalysed by MTO (entry 5, Table 10). However, in the presence of zeolite-Y, 99% conversion is reached with 99% selectivity (entry 6, Table 10). The confinement of the oxidative species inside the 12 A supercages... [Pg.160]

A keto group was extensively used in olefinations, providing a convenient access to natural-type oxonine products. Chemoselective formation of silyl enol ether of oxonine 171 (Scheme 34) followed by Wittig olefination, deprotection, and diastereoselective methylation afforded acetate 172 in good yield <2004JA1642>. [Pg.579]

Because of the formation of lower amounts of the products at higher temperatures, this method can be used for the chemoselective oxidation of benzylic alcohols in the presence of aliphatic ones. Higher yields of the products, chemoselectivity, and easy work-up procedure are among the other advantages of this method. [Pg.387]

Recently, there has heen some work dealing with the cross-henzoin condensation to afford nonsymmetrical products chemoselectively. In this case, the Breslow intermediate has to he formed predominantly with only one of the aldehydes and react selectively with the other one. Kuhl and Glorius have succeeded in this area developing a selective hydro gmiethylation of aldehydes.With a different approach, it is also possible to use hindered ortho-substituted aldehydes to inhibit the retro-benzoin reaction and the attack of the As an extension, the cross-benzoin reaction has been... [Pg.26]

With higher alkenes, three kinds of products, namely alkenyl acetates, allylic acetates and dioxygenated products are obtained[142]. The reaction of propylene gives two propenyl acetates (119 and 120) and allyl acetate (121) by the nucleophilic substitution and allylic oxidation. The chemoselective formation of allyl acetate takes place by the gas-phase reaction with the supported Pd(II) and Cu(II) catalyst. Allyl acetate (121) is produced commercially by this method[143]. Methallyl acetate (122) and 2-methylene-1,3-diacetoxypropane (123) are obtained in good yields by the gas-phase oxidation of isobutylene with the supported Pd catalyst[144]. [Pg.38]

Chemoselective C-alkylation of the highly acidic and enolic triacetic acid lactone 104 (pAl, = 4.94) and tetronic acid (pA, = 3.76) is possible by use of DBU[68]. No 0-alkylation takes place. The same compound 105 is obtained by the regioslective allylation of copper-protected methyl 3,5-dioxohexano-ate[69]. It is known that base-catalyzed alkylation of nitro compounds affords 0-alkylation products, and the smooth Pd-catalyzed C-allylation of nitroalkanes[38.39], nitroacetate[70], and phenylstilfonylnitromethane[71] is possible. Chemoselective C-allylation of nitroethane (106) or the nitroacetate 107 has been applied to the synthesis of the skeleton of the ergoline alkaloid 108[70]. [Pg.305]

Chemoselective reduction of a,(3-epoxy carbonyl compounds to aldols and their analogs by organoseleniums and its application to natural product synthesis 98YGK736. [Pg.243]

Chemoselectivity plays an important role in the benzannulation reaction as five-membered rings such as indene or furan derivatives are potential side products. The branching point is again the rf-vinylcarbene complex D intermediate which maybe formed either as a (Z)- or an ( )-metallatriene the (E)-configuration is required for the cyclisation with the terminal double bond. (Z)-Metallatriene D, however, leads to the formation of furan derivatives H (Scheme 8). Studies on the formation of (E)- and (Z)-isomers discussing stereoelectronic effects have been undertaken by Wulff [17]. [Pg.128]

Many procedures for the formation of carboxylic acid amides are known in the literature. The most widely practiced method employs carboxylic acid chlorides as the electrophiles which react with the amine in the presence of an acid scavenger. Despite its wide scope, this protocol suffers from several drawbacks. Most notable are the limited stability of many acid chlorides and the need for hazardous reagents for their preparation (thionyl chloride, oxalyl chloride, phosgene etc.) which release corrosive and volatile by-products. Moreover, almost any other functional group in either reaction partner needs to be protected to ensure chemoselective amide formation.2 The procedure outlined above presents a convenient and catalytic alternative to this standard protocol. [Pg.137]

Chemoselective alkenylation in the C-3 position of N-substituted 3,5-dichloropyrazin-2(lH)-ones has been described by Van der Eycken et al. [27]. When a mixture of N-substituted 3,5-dichloropyrazin-2(lH)-one, ethyl acrylate, and NEts in DME, using Pd(OAc)2/DTPB [2-(di-f-butylphosphanyl)bi-phenyl] as a precatalyst, was irradiated for 15 min at 150 °C, the desired /1-fimctionabzed ethyl acrylates could be obtained in moderate yields (Scheme 81). When styrene was used as an alkene, a mixture of E and Z products was isolated. The type of catalyst used proved to be important to avoid competitive Diels-Alder reaction of ethyl acrylate with the hetero-diene system of 3,5-dichloro-l-benzylpyrazin-2(lH)-one. [Pg.197]

The field of alkaloid synthesis via tandem cyclizations favors the application of (TMSlsSiH over other radical-based reagents, due to its very low toxicity and high chemoselectivity. For example, cyclization of the iodoarylazide 102, mediated by (TMSlsSiH under standard experimental conditions, produced the N-Si(TMS)3 protected alkaloid 103 that after washing with dilute acid afforded the amine 104 in an overall 83% yield from 102 (Reaction 81). ° The formation of the labile N-Si(TMS)3 bond was thought to arise from the reaction of the product amine 104 with the by-product (TMSlsSil. The skeletons of ( )-horsfiline, ( )-aspidospermidine and (+ )-vindoline have been achieved by this route. - ... [Pg.156]

High product selectivity is one of the most important challenges in synthetic methods. Some electrode reactions of organic substrates show a surprisingly high chemoselectivity and regioselectivity Diastereoselectivity is occasionally observed,... [Pg.72]

The high chemoselectivity for the Baeyer-Villiger process was utilized in the synthetic elaboration of another hetero-bicyclic substrate. The biooxidation only provides the expected unsaturated lactone in a desymmetrization reaction without compromising the olefin functionality. The biotransformation product was then converted to pivotal intermediates for C-nucleosides like showdomycin, tetrahydro-furan natural products like kumausyne, and goniofufurone analogs in subsequent chemical operations (Scheme 9.17) [161]. [Pg.245]

Analogous results were obtained for enol ether bromination. The reaction of ring-substituted a-methoxy-styrenes (ref. 12) and ethoxyvinylethers (ref. 10), for example, leads to solvent-incorporated products in which only methanol attacks the carbon atom bearing the ether substituent. A nice application of these high regio-and chemoselectivities is found in the synthesis of optically active 2-alkylalkanoic acids (ref. 13). The key step of this asymmetric synthesis is the regioselective and chemoselective bromination of the enol ether 4 in which the chiral inductor is tartaric acid, one of the alcohol functions of which acts as an internal nucleophile (eqn. 2). [Pg.104]

The overall pathway for the conversion of the unsaturated azido ether 281 to 2,5-dihydrooxazoles 282 involves first formation of the dipolar cycloaddition product 287, which thermolyzes to oxazoline 282 or is converted by silica gel to oxazolinoaziridine 288. While thermolysis or acid-catalyzed decomposition of triazolines to a mixture of imine and aziridine is well-documented [71,73], this chemoselective decomposition, depending on whether thermolysis or exposure to silica gel is used, is unprecedented. It is postulated that acidic surface sites on silica catalyze the triazoline decomposition via an intermediate resembling 289, which prefers to close to an aziridine 288. On the other hand, thermolysis of 287 may proceed via 290 (or the corresponding diradical) in which hydrogen migration is favored over ring closure. [Pg.42]

Chemoselectivity of enzymatic reaction is the enzyme-catalyzed transformation of one type of functional group in the presence of other sensitive groups present in the substrate molecule. As a result, reactions catalyzed by enzymes generally tend to be cleaner and purification of product(s) from impurities can largely be omitted. Therefore, all enzymatic reactions generate less by-products and waste compared to chemical transformations. This simplifies all operations and reduces costs of transformation, which is of great importance for the industry. [Pg.96]

Searching for a method of synthesis of enantiopure lamivudine 1, the compound having a monothioacetal stereogenic centre, Rayner et al. investigated a lipase-catalysed hydrolysis of various racemic a-acetoxysulfides 2. They found out that the reaction was both chemoselective (only the acetate group was hydrolysed with no detectable hydrolysis of the other ester moieties) and stereoselective. As a result of the kinetic resolution, enantiomerically enriched unreacted starting compounds were obtained. However, the hydrolysis products 3 were lost due to decomposition." In this way, the product yields could not exceed 50% (Equation 1). The product 2 (R = CH2CH(OEt)2) was finally transformed into lamivudine 1 and its 4-epimer. ... [Pg.160]


See other pages where Product chemoselectivity is mentioned: [Pg.430]    [Pg.191]    [Pg.193]    [Pg.276]    [Pg.430]    [Pg.191]    [Pg.193]    [Pg.276]    [Pg.66]    [Pg.198]    [Pg.367]    [Pg.393]    [Pg.438]    [Pg.100]    [Pg.88]    [Pg.169]    [Pg.45]    [Pg.191]    [Pg.475]    [Pg.769]    [Pg.180]    [Pg.270]    [Pg.348]    [Pg.99]    [Pg.261]    [Pg.133]    [Pg.176]    [Pg.144]    [Pg.1205]    [Pg.108]    [Pg.47]    [Pg.205]    [Pg.133]    [Pg.159]    [Pg.244]    [Pg.162]    [Pg.32]   
See also in sourсe #XX -- [ Pg.7 ]




SEARCH



Chemoselective

Chemoselectivity

© 2024 chempedia.info