Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Prochiral nucleophilic addition reactions

Carbohydrate-derived auxiliaries exhibit an efficient stereoselective potential in a number of nucleophilic addition reactions on prochiral imines. a-Amino acids, P amino acids and their derivatives can be synthesized in few synthetic steps, and with high enantiomeric purity. A variety of chiral heterocycles can readily be obtained from glycosyl imines by stereoselective transformations, providing evidence that carbohydrates have now been established as useful auxiliaries in stereoselective syntheses of various interesting classes of chiral compounds. [Pg.127]

Synthesis of a chiral compormd from an achiral compound requires a prochiral substrate that is selectively transformed into one of the possible stereoisomers. Important prochiral substrates are, for example, alkenes with two different substituents at one of the two C-atoms forming the double bond. Electrophilic addition of a substitutent different from the three existing ones (the two different ones above and the double bond) creates a fourth different substituent and, thus, an asymmetric carbon atom. Another class of important prochiral substrates is carbonyl compounds, which form asymmetric compounds in nucleophilic addition reactions. As exemplified in Scheme 2.2.13, prochiral compounds are characterized by a plane of symmetry that divides the molecule into two enantiotopic halves that behave like mirror images. The side from which the fourth substituent is introduced determines which enantiomer is formed. In cases where the prochiral molecule already contains a center of chirality, the plane of symmetry in the prochiral molecules creates two diastereotopic halves. By introducing the additional substituent diasterom-ers are formed. [Pg.18]

Step 2 of Figure 29.12 Isomerization Citrate, a prochiral tertiary alcohol, is next converted into its isomer, (2, 35)-isocitrate, a chiral secondary alcohol. The isomerization occurs in two steps, both of which are catalyzed by the same aconitase enzyme. The initial step is an ElcB dehydration of a /3-hydroxy acid to give cfs-aconitate, the same sort of reaction that occurs in step 9 of glycolysis (Figure 29.7). The second step is a conjugate nucleophilic addition of water to the C=C bond (Section 19.13). The dehydration of citrate takes place specifically on the pro-R arm—the one derived from oxaloacetate—rather than on the pro-S arm derived from acetyl CoA. [Pg.1156]

Sulfoxides (R1—SO—R2), which are tricoordinate sulfur compounds, are chiral when R1 and R2 are different, and a-sulfmyl carbanions derived from optically active sulfoxides are known to retain the chirality. Therefore, these chiral carbanions usually give products which are rich in one diastereomer upon treatment with some prochiral reagents. Thus, optically active sulfoxides have been used as versatile reagents for asymmetric syntheses of many naturally occurring products116, since optically active a-sulfinyl carbanions can cause asymmetric induction in the C—C bond formation due to their close vicinity. In the following four subsections various reactions of a-sulfinyl carbanions are described (A) alkylation and acylation, (B) addition to unsaturated bonds such as C=0, C=N or C= N, (C) nucleophilic addition to a, /5-unsaturated sulfoxides, and (D) reactions of allylic sulfoxides. [Pg.606]

The scope of reactions catalyzed by metalacychc iridium-phosphoramidite complexes is remarkably broad, but reactions with some substrates, such as allylic alcohols, prochiral nucleophiles, branched allylic esters, and highly substituted allylic esters, that would form synthetically valuable products or would lead to simpler symthesis of reactants occur with low yields and selectivities. In addition, iridium-catalyzed allylic substitution reactions are sensitive to air and water and must be conducted with dry solvents under an inert atmosphere. Several advances have helped to overcome some, but not aU of these challenges. [Pg.201]

The introduction of umpoled synthons 177 into aldehydes or prochiral ketones leads to the formation of a new stereogenic center. In contrast to the pendant of a-bromo-a-lithio alkenes, an efficient chiral a-lithiated vinyl ether has not been developed so far. Nevertheless, substantial diastereoselectivity is observed in the addition of lithiated vinyl ethers to several chiral carbonyl compounds, in particular cyclic ketones. In these cases, stereocontrol is exhibited by the chirality of the aldehyde or ketone in the sense of substrate-induced stereoselectivity. This is illustrated by the reaction of 1-methoxy-l-lithio ethene 56 with estrone methyl ether, which is attacked by the nucleophilic carbenoid exclusively from the a-face —the typical stereochemical outcome of the nucleophilic addition to H-ketosteroids . Representative examples of various acyclic and cyclic a-lithiated vinyl ethers, generated by deprotonation, and their reactions with electrophiles are given in Table 6. [Pg.885]

Significantly better results in addition of non-stabilized nucleophiles have come from hydrogenolysis reactions using formate as a hydride donor as shown in Scheme 8E.46. The racemic cyclic acetate and prochiral linear carbonates were reduced in good enantioselectivities by monophosphine ligands (/ )-MOP (16) and (Zf)-MOP-phen (17), respectively [195]. The chirality of the allylsilane can be efficiently transferred to the carbinol center of the homoallylic alcohol by the subsequent Lewis acid catalyzed carbonyl addition reaction 1196], The analogous... [Pg.637]

Besides the transition-metal-catalyzed asymmetric addition reactions to prochiral olefins, the substitution reaction of a carbon nucleophile to allylic esters has been investigated using a variety of chiral transition-metal catalysts. Using the aforementioned sugar diphosphites... [Pg.1062]

The nucleophilic addition on substituted ketenes is a well-known method to generate a prochiral enolate that can be further protonated by a chiral source of proton. Metallic nucleophiles are used under anhydrous conditions therefore, the optically pure source of proton must be added then (often in a stoichiometric amount) to control the protonation. In the case of a protic nucleophile, an alcohol, a thiol, or an amine, the chiral inductor is usually present at the beginning of the reaction since it also catalyzes the addition of the heteroatomic nucleophile before mediating the enantioselective protonation (Scheme 7.5). The use of a chiral tertiary amine as catalyst generates a zwitterionic intermediate B by nucleophilic addition on ketene A, followed by a rapid diastereoselective protonation of the enolate to acylammonium C, and then the release of the catalyst via its substitution by the nucleophile ends this reaction sequence. [Pg.175]

Pracejus also studied the tandem nucleophilic addition/diastereoselective protonation of optically pure (S)-phenylethylamine on phenylmethylketene [11], With the aim of synthesizing amino acids and their derivatives, Calmes and coworkers reinvestigated the reaction of prochiral ketenes (generated in situ from acid chorides in the presence of a tertiary amine) with (R)-pantolactonc, an a-hydroxylactone [12], The authors have shown that the diastereoselectivity is dependent on the base used. Particularly, triethylamine and quinuclidine afforded complementary results and the diasteromeric ratios observed with quinuclidine suggest that the high stereoselections could be observed in nucleophilic additions to prochiral ketenes in the presence of cinchona alkaloids. [Pg.177]

Despite the obvious potential of cinchona alkaloids as bifunctional chiral catalysts of the nucleophilic addition/enantioselective protonation on prochiral ketenes, no further contribution has appeared to date and only a few papers described this asymmetric reaction with other catalysts [13], When the reaction is carried out with soft nucleophiles, the catalyst, often a chiral tertiary amine, adding first on ketene, is covalently linked to the enolate during the protonation. Thus, we can expect an optimal control of the stereochemical outcome of the protonation. This seems perfectly well suited for cinchona analogues and we can therefore anticipate successful applications of these compounds for this reaction in the near future. [Pg.177]

The enantioselective nucleophilic addition of prochiral C=0 and C=N moieties to the corresponding saturated chiral products is one of the most important stereoselective transformations on both the laboratory and the industrial scale. Although, over the past few decades, remarkable scientific achievements have been made in these research areas by using a variety of transitional metal-based catalysts, the sensitivity of the reaction to moisture and oxygen, as well as the toxic metal contamination of the product, usually restrict its practical application. Thus, currently, there is much interest in chiral organocatalysts, as they tend to be less toxic and more environmental friendly than traditional metal-based catalysts [1]. They are usually robust and thus tolerate moisture and oxygen, so that they usually do not demand any special reaction conditions. [Pg.197]

The naturally occurring cinchona alkaloids (Figure 8.1), as described in other chapters of this book, have proven to be powerful organocatalysts in most major chemical reactions. They possess diverse chiral skeletons and are easily tunable for diverse catalytic reactions through different mechanisms, which make them privileged organocatalysts. The vast synthetic potential of cinchona alkaloids and their derivatives in the asymmetric nucleophilic addition of prochiral C=0 and C=N bonds has also been well demonstrated over the last decade. [Pg.197]

In addition to coupling reactions that occur with aryl and vinyl nucleophiles and electrophiles, coupling reactions that occur with sp -hybridized nucleophiles or electrophiles have been developed. These reactions include those that form tertiary and quaternary stereocenters from racemic or prochiral nucleophiles, as shown in Equation 19.4. Substitution reactions at propargylic and benzylic electropliiles have also been reported, and several groups have reported in recent years progress in metal-catalyzed substitutions of alkyl electrophiles, including enantioselective substitutions of aliphatic organic halides. [Pg.877]

The use of a prochiral nucleophile in allylic substitution reactions provides an additional opportunity for asymmetric indnction. Allyl acetate itself can be used as the electrophilic partner and the new stereogenic center is positioned further away from the allyl group (Scheme 28). [Pg.324]

Lewis acid 71. This procedure gave the corresponding seven-membered products 72 with high enantio- and diastereoselectivity (Scheme 49) [83]. This reaction involves (1) the nucleophilic addition of 70 to acid activated cyclohexanones and (2) the subsequent 1,2-skeletal rearrangement of diazonium intermediate with the evolution of nitrogen. It should be noted that this protocol overcame the difficulty of stereocontrolled addition to symmetric ketones without a prochiral face. [Pg.210]

The mechanisms of the reactions of the cluster Ru3(CO)i2 with halide ions, alkoxide ions and amines, all of which involve initial rapid nucleophilic addition at a carbonyl hgand, have been reviewed.In a related study, addition of 5-proline methylester or 5-methoxymethyl pyrrolidine to a carbonyl ligand of Ru3(CO)j2 has yielded chiral carbamoyl clusters of the type (84) R = C02Me or CH20Me, Eq. (16). Such chiral clusters may have potential as new enantioselective catalysts, as shown by the observation that cluster (84), R = CH20Me) catalyzes the isomerization of the prochiral allylic alcohol nerol to give the chiral aldehyde citronellal with an enantiomeric excess of 12%. [Pg.308]

The protocol of the allylic alkylation, which proceeds most likely via a c-allyl-Fe-intermediate, could be further improved by replacing the phosphine ligand with an M-heterocyclic carbene (NHC) (Scheme 21) [66]. The addition of a ferf-butyl-substituted NHC ligand 86 allowed for full conversion in the exact stoichiometric reaction between allyl carbonate and pronucleophile. Various C-nucleophiles were allylated in good to excellent regioselectivities conserving the 71 bond geometry of enantiomerically enriched ( )- and (Z)-carbonates 87. Even chirality and prochirality transfer was observed (Scheme 21) [67]. [Pg.198]


See other pages where Prochiral nucleophilic addition reactions is mentioned: [Pg.324]    [Pg.179]    [Pg.69]    [Pg.250]    [Pg.130]    [Pg.1061]    [Pg.40]    [Pg.805]    [Pg.944]    [Pg.1059]    [Pg.17]    [Pg.119]    [Pg.104]    [Pg.996]    [Pg.148]    [Pg.416]    [Pg.43]    [Pg.44]    [Pg.266]    [Pg.68]   
See also in sourсe #XX -- [ Pg.68 ]




SEARCH



Addition reactions nucleophilic

Nucleophile addition reactions

Nucleophiles addition reactions

Prochiral

Prochiral nucleophiles

Prochirality

© 2024 chempedia.info