Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fine powder processing

Contrary to the above mentioned technologies, which are based on arc plasma furnaces, a radiofrequency (RF) plasma system can process fine powders without granulation in a continuous operation. This possibility, together with the advantageous features of the thermal plasmas mentioned above, offer great perspectives for the synthesis of special ceramic powders such as spinel ferrites [5]. The RF plasma treatment produces nanosized metal and/or oxide powders depending on the parameters of processing. In this paper application of an RF thermal plasma system for the treat-... [Pg.225]

Methyluracil is prepared from ethyl acetoacetate and urea by a two-step process. Finely powdered urea ii itlrred Into ii mixture of small amounts of absolute ethanol and hydrochloric acid In a urystullizing dish which is placed in a... [Pg.637]

An improved yield is obtained by the following process. Add a mixture of 75 g. (70-5 ml.) of propionyl chloride and 90 g. (103 ml.) of sodium-dried A.R. benzene to a vigorously stirred suspension of 75 g. of finely-powdered anhydrous aluminium chloride in 100 ml, of dry carbon disulphide, Then introduce more of the aluminium chloride (about 15 g.) until no further evolution of hydrogen chloride occurs. The yield of propiophenone, b.p. 123°/25 mm., is about 90 g. [Pg.732]

Aqueous Dispersions. The dispersion is made by the polymerization process used to produce fine powders of different average particle sizes (58). The most common dispersion has an average particle size of about 0.2 p.m, probably the optimum particle size for most appHcations. The raw dispersion is stabilized with a nonionic or anionic surfactant and concentrated to 60—65 wt % soHds by electrodecantation, evaporation, or thermal concentration (59). The concentrated dispersion can be modified further with chemical additives. The fabrication characteristics of these dispersions depend on polymerization conditions and additives. [Pg.350]

Fine Powder Resins. Fine powder PTFE resins are extremely sensitive to shear. They must be handled gendy to avoid shear, which prevents processing. However, fine powder is suitable for the manufacture of tubing and wire insulation for which compression molding is not suitable. A paste-extmsion process may be appHed to the fabrication of tubes with diameters from fractions of a millimeter to about a meter, walls from thicknesses of 100—400 )J.m, thin rods with up to 50-mm diameters, and cable sheathing. Calendering unsintered extmded soHd rods produces thread-sealant tape and gaskets. [Pg.354]

Different resins have been developed for use in different reduction—ratio appHcation ranges (111,112). The powders suitable for high reduction—ratio appHcations, such as wire coatings, are not necessarily suitable for the medium reduction—ratio appHcations, such as tubings, or the low reduction—ratio appHcations, such as thread-sealant tapes or pipe liners. AppHcations and processing techniques are being used, which utilize the unique combination of properties offered by PTFE in fine powder form (113—115). [Pg.354]

Chemical Applications. The chemical processing industry uses large amounts of granular and fine powder PTFE. Soft packing appHcations are manufactured from dispersions, and hard packings are molded or machined from stocks and shapes made from granular resin. [Pg.355]

The polymer is separated from the medium and converted to usehil forms such as melt-extmded cubes for melt processible appHcations. Teflon PEA is also available as a dispersion, a fine powder, or in unmelted bead form. [Pg.374]

Gum Ghatti. Gum ghatti [9000-28-61] is an exudate Foxn.xinogeissus latifolia a tree that is found in India and Sri Lanka. The exudations are natural, but yields can be increased by making artificial incisions. The sun-dried gum is classified according to color and impurities and processed by grinding to a fine powder. [Pg.434]

Mechanical alloying is another method of producing dispersion-strengthened metals. In this process, the powdered constituents of the ahoy are treated in an attrition mih. A finely distributed layer of the dispersed phase is distributed on particles of the base metal. Subsequent pressing and sintering strengthens the dispersion (25). [Pg.191]

The second step is to disperse the core material being encapsulated in the solution of shell material. The core material usually is a hydrophobic or water-knmiscible oil, although soHd powders have been encapsulated. A suitable emulsifier is used to aid formation of the dispersion or emulsion. In the case of oil core materials, the oil phase is typically reduced to a drop size of 1—3 p.m. Once a suitable dispersion or emulsion has been prepared, it is sprayed into a heated chamber. The small droplets produced have a high surface area and are rapidly converted by desolvation in the chamber to a fine powder. Residence time in the spray-drying chamber is 30 s or less. Inlet and outlet air temperatures are important process parameters as is relative humidity of the inlet air stream. [Pg.322]

Whereas the production flow charts of inorganic pigments appear to be simple, the actual processes can be very compHcated. Many pigments are not pure chemical compounds, but can be multiphase systems contaminated with various impurities and modifiers. Because pigments are fine powders, the physical properties are as critical to their appHcation performance as are the chemical properties. [Pg.6]

Bulk sohds do not always discharge rehably. Unrehable flow, which can occur with some frequency, can be expensive in terms of inefficient processes, wasted product, and operational comphcations. Predictable flow is often impeded by the formation of an arch or rathole, or fine powders may flood uncontroUably. [Pg.551]

Flooding. When a stable rathole forms in a bin and fresh material is added, or when material falls into the channel from above, a flood can occur if the bulk sohd is a fine powder. As the powder falls into the channel, it becomes entrained in the air in the channel and becomes fluidized (aerated). When this fluidized material reaches the outlet, it is likely to flood from the bin, because most feeders are designed to handle sohds, not fluids (see Eluidization). Fimited Discharge Kate. Bulk sohds, especially fine powders, sometimes flow at a rate lower than required for a process. This flow rate limitation is often a function of the material s air or gas permeabihty. Simply increasing the speed of the feeder does not solve the problem. There is a limit to how fast material... [Pg.551]

In this process, the fine powder of lithium phosphate used as catalyst is dispersed, and propylene oxide is fed at 300°C to the reactor, and the product, ahyl alcohol, together with unreacted propylene oxide is removed by distihation (25). By-products such as acetone and propionaldehyde, which are isomers of propylene oxide, are formed, but the conversion of propylene oxide is 40% and the selectivity to ahyl alcohol reaches more than 90% (25). However, ahyl alcohol obtained by this process contains approximately 0.6% of propanol. Until 1984, ah ahyl alcohol manufacturers were using this process. Since 1985 Showa Denko K.K. has produced ahyl alcohol industriahy by a new process which they developed (6,7). This process, which was developed partiy for the purpose of producing epichlorohydrin via ahyl alcohol as the intermediate, has the potential to be the main process for production of ahyl alcohol. The reaction scheme is as fohows ... [Pg.74]

In a chemical vapor deposition (CVD) variant of conventional powder metallurgy processing, fine chromium powder is obtained by hydrogen reduction of Crl2 and simultaneously combined with fine thorium(IV) oxide [1314-20-17, H1O2, particles. This product is isostaticaHy hot pressed to 70 MPa (700 atm) and 1100°C for 2 h. Compacts are steel clad and hot roUed to sheets (24). [Pg.119]


See other pages where Fine powder processing is mentioned: [Pg.186]    [Pg.19]    [Pg.385]    [Pg.288]    [Pg.186]    [Pg.19]    [Pg.385]    [Pg.288]    [Pg.81]    [Pg.774]    [Pg.318]    [Pg.194]    [Pg.243]    [Pg.70]    [Pg.307]    [Pg.350]    [Pg.355]    [Pg.386]    [Pg.26]    [Pg.476]    [Pg.176]    [Pg.507]    [Pg.38]    [Pg.40]    [Pg.109]    [Pg.109]    [Pg.109]    [Pg.248]    [Pg.199]    [Pg.207]    [Pg.285]    [Pg.293]    [Pg.443]    [Pg.194]    [Pg.291]    [Pg.318]    [Pg.323]    [Pg.38]   
See also in sourсe #XX -- [ Pg.68 , Pg.69 , Pg.70 ]




SEARCH



Fine Powder Resin Processing

Fining process

Powder processes

Powders, fine

Powders, processing

Processing of Fine Powders

Processing, fine powders extrusion

Processing, fine powders preforming

© 2024 chempedia.info