Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Process operations conversion

If air is used, then a single pass with respect to each feedstock is used and no recycle to the reactor (Fig. 10.4a).-Thus the process operates at near stoichiometric feed rates to achieve high conversions. Typically, between 0.7 and 1.0 kg of vent gases are emitted per kilogram of dichloroethane produced. ... [Pg.283]

Preprocessor. A device in a data-acquisition system that performs a significant amount of data reduction by extracting specific information from raw signal representations in advance of the main processing operation. A preprocessor can constitute the whole of a data-acquisition interface, in which case it must also perform the data-acquisition task (conversion of spectrometer signal to computer representation), or it can specialize solely in data treatment. [Pg.431]

Type of process Operating temperature, °C Extraction Crystal conversion Acid concentration, % P3O3 Acid impurity level vs dihydrate acid P3O3 recovery, %... [Pg.225]

One of the key benefits of anionic PS is that it contains much lower levels of residual styrene monomer than free-radical PS (167). This is because free-radical polymerization processes only operate at 60—80% styrene conversion, whereas anionic processes operate at >99% styrene conversion. Removal of unreacted styrene monomer from free-radical PS is accompHshed using continuous devolatilization at high temperature (220—260°C) and vacuum. This process leaves about 200—800 ppm of styrene monomer in the product. Taking the styrene to a lower level requires special devolatilization procedures such as steam stripping (168). [Pg.517]

In TBP extraction, the yeUowcake is dissolved ia nitric acid and extracted with tributyl phosphate ia a kerosene or hexane diluent. The uranyl ion forms the mixed complex U02(N02)2(TBP)2 which is extracted iato the diluent. The purified uranium is then back-extracted iato nitric acid or water, and concentrated. The uranyl nitrate solution is evaporated to uranyl nitrate hexahydrate [13520-83-7], U02(N02)2 6H20. The uranyl nitrate hexahydrate is dehydrated and denitrated duting a pyrolysis step to form uranium trioxide [1344-58-7], UO, as shown ia equation 10. The pyrolysis is most often carried out ia either a batch reactor (Fig. 2) or a fluidized-bed denitrator (Fig. 3). The UO is reduced with hydrogen to uranium dioxide [1344-57-6], UO2 (eq. 11), and converted to uranium tetrafluoride [10049-14-6], UF, with HF at elevated temperatures (eq. 12). The UF can be either reduced to uranium metal or fluotinated to uranium hexafluoride [7783-81-5], UF, for isotope enrichment. The chemistry and operating conditions of the TBP refining process, and conversion to UO, UO2, and ultimately UF have been discussed ia detail (40). [Pg.318]

These processes are aH characterized by low isobutane conversion to achieve high isobutylene selectivity. The catalytic processes operate at conversions of 45—55% for isobutane. The Coastal process also operates at 45—55% isobutane conversion to minimize the production of light ends. This results in significant raw material recycle rates and imposing product separation sections. [Pg.368]

The chemical process industries (CPI), petroleum and allied industries apply physical as well as chemical methods to the conversion of raw feedstock materials into salable products. Because of the diversity of products, process conditions and requirements, equipment design is often unique, or case specific. The prime requirement of any piece of equipment is that it performs the function for which it was designed under the intended process operating conditions, and do so in a continuous and reliable manner. Equipment must have mechanical reliability, which is characterized by strength, rigidness, steadiness, durability and tightness. Any one or combination of these characteristics may be needed for a particular piece of equipment. [Pg.1]

As a rule, sulfonation takes place continually in a cascade or a falling film reactor (Table 14) at about 50-70°C. The S03 is steadily diluted to a concentration of 5-10 vol % with air or an inert gas. The LAB conversion reaches a value between 92% and 98% [156,157]. Mixing of the already formed alkyl-benzenes with fresh S03 leads to undesired highly sulfonated byproducts. In order to prevent these side reactions, all processes operate concurrently. [Pg.81]

Consider an equilibrium-limited esterification reaction. One way to drive the reaction to completion is to remove the water formed by the reaction selectively through a membrane. This can be an attractive strategy when higher temperatures are undesirable due to factors like colouration of the materials and formation of undesirable products even though these may be present at a low level. As another example, consider the air oxidation of cyclohexane or cyclododecane to cyclohexanone/-ol or cyclododecanone/-ol, where the product can undergo more facile oxidation to unwanted or much lower value products. Consequently, industrial processes operate at a level of less than 5% conversion. If a membrane can selectively remove cyclohexanone as it is formed, the problems mentioned above can be thwarted. However, selective polymeric membranes, which can work at oxidation temperature, have not yet been proved. [Pg.171]

To address this situation, a data interpretation system was constructed to monitor and detect changes in the second stage that will significantly affect the product quality. It is here that critical properties are imparted to the process material. Intuitively, if the second stage can be monitored to anticipate shifts in normal process operation or to detect equipment failure, then corrective action can be taken to minimize these effects on the final product. One of the limitations of this approach is that disturbances that may affect the final product may not manifest themselves in the variables used to develop the reference model. The converse is also true—that disturbances in the monitored variables may not affect the final product. However, faced with few choices, the use of a reference model using the process data is a rational approach to monitor and to detect unusual process behavior, to improve process understanding, and to maintain continuous operation. [Pg.84]

In choosing the reactor conditions, particularly the conversion, and optimising the design, the interaction of the reactor design with the other process operations must not be overlooked. The degree of conversion of raw materials in the reactor will determine the size, and cost, of any equipment needed to separate and recycle unreacted materials. In these circumstances the reactor and associated equipment must be optimised as a unit. [Pg.486]

The optimized process operates at 80 bar hydrogen and 50 °C with a catalyst generated in situ from [Ir(cod)Cl]2 and the Josiphos ligand PPF-PXyl2 (short name Xyliphos) at a SCR of >1000000. Complete conversion is reached within 3—4h, the initial TOFs exceed 1 800 000 h 1, and the ee is about 80%. This process is now operated by Syngenta on a scale of >10000 ty-1 [127]. [Pg.1310]

One common use of SHG is to convert the output of a fixed-frequency laser into a different spectral region. For example, the Nd-YAG laser operates in the near IR at a wavelength of 1,064 nm, while SHG is routinely used to convert the wavelength of the radiation to 532 nm. For x processes, the conversion efficiency can be up to 30% for phase-matched case with a nanosecond laser pulse. [Pg.269]


See other pages where Process operations conversion is mentioned: [Pg.416]    [Pg.240]    [Pg.241]    [Pg.7]    [Pg.80]    [Pg.495]    [Pg.209]    [Pg.295]    [Pg.418]    [Pg.455]    [Pg.508]    [Pg.3]    [Pg.111]    [Pg.769]    [Pg.13]    [Pg.93]    [Pg.53]    [Pg.308]    [Pg.238]    [Pg.69]    [Pg.72]    [Pg.125]    [Pg.265]    [Pg.75]    [Pg.241]    [Pg.483]    [Pg.246]    [Pg.90]    [Pg.35]    [Pg.43]    [Pg.145]    [Pg.209]    [Pg.295]    [Pg.79]    [Pg.370]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Conversion processes

Polymer processing conversion operations

Process operability

Process operators

Processing Operations

© 2024 chempedia.info