Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mercury problem

Amalgamated zinc powder has been used as the negative material to prevent zinc corrosion and zinc passivation. Recently, from the viewpoint of environmental problems, mercury-free alkaline-manganese batteries were developed by using zinc powder with indium, bismuth and other additives [2-4]. Adding indium to zinc powder is the most effective way to improve the characteristics of the cells [3]. Figure 3 shows the variation in the internal impedance of the cells according to the additive content of the zinc powder. [Pg.21]

Mercury has been used extensively in electrochemistry in the past because of its many good properties, but its use is declining due to health and environmental problems. Mercury is not used in industrial cells anymore. [Pg.241]

Problem Mercury and its compounds have many uses, from fillings for teeth (as a mixture with silver, copper, and tin) to the industrial production of chlorine. Because of their toxicity, however, soluble mercury compounds, such as mercury(II) nitrate, must be removed from industrial wastewater. One removal method reacts the wastewater with... [Pg.98]

Amalgamated zinc powder has been used as the negative material to prevent zinc corrosion and zinc passivation. Recently, from the viewpoint of environmental problems, mercury-free alkaline-manganese batteries were developed by using zinc... [Pg.32]

As a follow-up to Problem 2, the observed nucleation rate for mercury vapor at 400 K is 1000-fold less than predicted by Eq. IX-9. The effect may be attributed to a lowered surface tension of the critical nuclei involved. Calculate this surface tension. [Pg.342]

Equation XVII-70 bears a strong resemblance to the Langmuir equation (see Ref. 4)—to the point that it is doubtful whether the two could always be distinguished experimentally. An equivalent form obtained by Volmer [53] worked well for data on the adsorption of various organic vapors on mercury [54] (see Problem XVII-40). [Pg.623]

Improved sensitivities can be attained by the use of longer collection times, more efficient mass transport or pulsed wavefomis to eliminate charging currents from the small faradic currents. Major problems with these methods are the toxicity of mercury, which makes the analysis less attractive from an eiivironmental point of view, and surface fouling, which coimnonly occurs during the analysis of a complex solution matrix. Several methods have been reported for the improvement of the pre-concentration step [17,18]. The latter is, in fact. [Pg.1932]

Electrolysis. GalHum can be extracted by direct electrolysis of the aluminate solution at a strongly agitated mercury cathode. The recovery from a sodium gallate solution resulting from the carbonation process is another possibiHty. This process is probably no longer operative because of the environmental problems associated with the mercury. [Pg.160]

Mercury from these accumulated wastes is generally best recovered by total degradation in stills, where metallic mercury is condensed and collected. The recovery costs are amply compensated by the value of the metal recovered. Moreover, disposal problems are either eliminated or severely diminished. [Pg.112]

Concurrent with requirements for low levels of mercurials in discharge water is the problem of their deterrnination. The older methods of wet chemistry are inadequate, and total rehance is placed on instmmental methods. The most popular is atomic absorption spectrophotometry, which rehes on the absorption of light by mercury vapor (4). Solutions of mercury compounds not stabilized with an excess of acid tend to hydrolyze to form yeUow-to-orange basic hydrates. These frequendy absorb onto the walls of containers and may interfere with analytical results when low levels (ppm) of mercury are determined. [Pg.112]

Environmental Factors. The control, recovery, and disposal of mercury-bearing waste products are as important to the mercurials industry as the manufacturing process. The difficulties involved in removing mercury from waste-product streams and the problems of recovery or disposal have resulted in a substantial reduction in the number of manufacturers of mercury compounds as well as in the variety of mercury compounds being manufactured. Moreover, the manufacturing process used for a mercury compound may not necessarily be the most efficient or economical. Rather, the choice may depend on the nature of the by-products, the toxic hazard of the process, and the ease of recovery of the mercury from the waste-product stream. [Pg.116]

Problems of removal of mercury from aqueous effluents are more comphcated in plants that manufacture a variety of inorganic and organic mercury compounds it is generally best to separate the effluent streams of inorganic and organic mercurials. When phenyhnercuric acetate is precipitated from its solution in acetic acid by addition of water, the filtrate is collected and reused for the next precipitation. This type of recycling is necessary not only for economic reasons but also to minimise recovery operations. [Pg.117]

There are problems to be considered and avoided when using Hquid-in-glass thermometers. One type of these is pressure errors. The change in height of the mercury column is a function of the volume of the bulb compared to the volume of the capillary. An external pressure (positive or negative) which tends to alter the bulb volume causes an error of indication, which may be small for normal barometric pressure variations but large when, for example, using the thermometer in an autoclave or pressure vessel. [Pg.405]

In most cylindrical carbon—zinc cells, the zinc anode also serves as the container for the cell. The zinc can is made by drawing or extmsion. Mercury [7439-97-6J has traditionally been incorporated in the cell to improve the corrosion resistance of the anode, but the industry is in the process of removing this material because of environmental concerns. Corrosion prevention is especially important in cylindrical cells because of the tendency toward pitting of the zinc can which leads to perforation and electrolyte leakage. Other cell types, such as flat cells, do not suffer as much from this problem. [Pg.522]

Environmental Concerns. Dyes, because they are intensely colored, present special problems in effluent discharge even a very small amount is noticeable. However, the effect is more aesthetically displeasing rather than ha2ardous, eg, red dyes discharged into rivers and oceans. Of more concern is the discharge of toxic heavy metals such as mercury and chromium. [Pg.301]

Potentiometric Titrations. If one wishes to analyze electroactive analytes that are not ions or for which ion-selective electrodes are not available, two problems arise. First, the working electrodes, such as silver, platinum, mercury, etc, are not selective. Second, metallic electrodes may exhibit mixed potentials, which may arise from a variety of causes. For example, silver may exchange electrons with redox couples in solution, sense Ag" via electron exchange with the external circuit, or tarnish to produce pH-sensitive oxide sites or Ag2S sites that are sensitive to sulfide and haUde. On the other... [Pg.56]


See other pages where Mercury problem is mentioned: [Pg.196]    [Pg.438]    [Pg.169]    [Pg.81]    [Pg.329]    [Pg.196]    [Pg.438]    [Pg.169]    [Pg.81]    [Pg.329]    [Pg.311]    [Pg.594]    [Pg.13]    [Pg.51]    [Pg.500]    [Pg.209]    [Pg.510]    [Pg.521]    [Pg.279]    [Pg.203]    [Pg.488]    [Pg.502]    [Pg.479]    [Pg.117]    [Pg.117]    [Pg.125]    [Pg.330]    [Pg.167]    [Pg.318]    [Pg.192]    [Pg.448]    [Pg.377]    [Pg.168]    [Pg.400]    [Pg.516]    [Pg.544]    [Pg.85]   
See also in sourсe #XX -- [ Pg.302 ]




SEARCH



Mercury lamps, problems with

© 2024 chempedia.info