Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Problem stationary

It is an important result that even for time-independent Hamiltonian problems, stationary-state wavefunctions are not the only possible solutions of the TDSE. In fact, any arbitrary superposition (or linear combination) of different stationary-state wavefunctions is a solution of the TDSE. To illustrate this point, let Hq be some particular Hamiltonian with no explicit time dependence and let /, be the set of its spatial eigenfunctions with associated eigenvalues ,. ... [Pg.249]

The probes are assumed to be of contact type but are otherwise quite arbitrary. To model the probe the traction beneath it is prescribed and the resulting boundary value problem is first solved exactly by way of a double Fourier transform. To get managable expressions a far field approximation is then performed using the stationary phase method. As to not be too restrictive the probe is if necessary divided into elements which are each treated separately. Keeping the elements small enough the far field restriction becomes very week so that it is in fact enough if the separation between the probe and defect is one or two wavelengths. As each element can be controlled separately it is possible to have phased arrays and also point or line focussed probes. [Pg.157]

At the present time there exist no flux relations wich a completely sound cheoretical basis, capable of describing transport in porous media over the whole range of pressures or pore sizes. All involve empiricism to a greater or less degree, or are based on a physically unrealistic representation of the structure of the porous medium. Existing models fall into two main classes in the first the medium is modeled as a network of interconnected capillaries, while in the second it is represented by an assembly of stationary obstacles dispersed in the gas on a molecular scale. The first type of model is closely related to the physical structure of the medium, but its development is hampered by the lack of a solution to the problem of transport in a capillary whose diameter is comparable to mean free path lengths in the gas mixture. The second type of model is more tenuously related to the real medium but more tractable theoretically. [Pg.3]

The problem of a mass suspended by a spring from another mass suspended by another spring, attached to a stationary point (Kreyszig, 1989, p. 159ff) yields the matrix equation... [Pg.44]

In currently available software, the Hamiltonian above is nearly never used. The problem can be simplified by separating the nuclear and electron motions. This is called the Born-Oppenheimer approximation. The Hamiltonian for a molecule with stationary nuclei is... [Pg.11]

An important problem with all liquid stationary phases is their tendency to bleed from the column. The temperature limits listed in Table 12.2 are those that minimize the loss of stationary phase. When operated above these limits, a column s useful lifetime is significantly shortened. Capillary columns with bonded or... [Pg.566]

The first of these problems involves relative motion between a rigid sphere and a liquid as analyzed by Stokes in 1850. The results apply equally to liquid flowing past a stationary sphere with a steady-state (subscript s) velocity v or to a sphere moving through a stationary liquid with a velocity -v the relative motion is the same in both cases. If the relative motion is in the vertical direction, we may visualize the slices of liquid described above as consisting of... [Pg.585]

Submitting the main topic, we deal with models of solids with cracks. These models of mechanics and geophysics describe the stationary and quasi-stationary deformation of elastic and inelastic solid bodies having cracks and cuts. The corresponding mathematical models are reduced to boundary value problems for domains with singular boundaries. We shall use, if it is possible, a variational formulation of the problems to apply methods of convex analysis. It is of importance to note the significance of restrictions stated a priori at the crack surfaces. We assume that nonpenetration conditions of inequality type at the crack surfaces are fulfilled, which improves the accuracy of these models for contact problems. We also include the modelling of problems with friction between the crack surfaces. [Pg.1]

Chiral separations present special problems for vaUdation. Typically, in the absence of spectroscopic confirmation (eg, mass spectral or infrared data), conventional separations are vaUdated by analysing "pure" samples under identical chromatographic conditions. Often, two or more chromatographic stationary phases, which are known to interact with the analyte through different retention mechanisms, are used. If the pure sample and the unknown have identical retention times under each set of conditions, the identity of the unknown is assumed to be the same as the pure sample. However, often the chiral separation that is obtained with one type of column may not be achievable with any other type of chiral stationary phase. In addition, "pure" enantiomers are generally not available. [Pg.68]

The three disadvantages described can be avoided by using soHd elements, instead of permeable ones, which create the shear to prevent or reduce cake formation. Only the stationary surface inside the filter is then available for filtration and this means a reduction in capacity. This is not a problem because the soHd disks can be slimmer and the collection of filtrate does not have to be through a hoUow shaft. [Pg.411]

Localized corrosion, which occurs when the anodic sites remain stationary, is a more serious industrial problem. Forms of localized corrosion include pitting, selective leaching (eg, dezincification), galvanic corrosion, crevice or underdeposit corrosion, intergranular corrosion, stress corrosion cracking, and microbiologicaHy influenced corrosion. Another form of corrosion, which caimot be accurately categorized as either uniform or localized, is erosion corrosion. [Pg.266]

Next we ll discuss evidence marks and prints that are different, but to the untrained eye, they may appear the same. You may see a spot or arc of wear and gouging on the rotary elements, and a eireumferential wear circle on the bore of the close tolerance stationary elements. This is a maintenanee-indueed problem, d his is the sign of a physically bent shaft, or a shaft that is not round, or a dynamic imbalance in the shaff-sleeve-impeller assembly. The solution is to put the shaft on a lathe or dynamic balancer, verify its condition, and correct before the next installation. [Pg.139]

Potential control with zinc reference electrodes presented a problem because deposits of corrosion products are formed on zinc in hot water. This caused changes in the potential of the electrode which could not be tolerated. Other reference electrodes (e.g., calomel and Ag-AgCl reference electrodes) were not yet available for this application. Since then, Ag-AgCl electrodes have been developed which successfully operate at temperatures up to 100°C. The solution in the previous case was the imposition of a fixed current level after reaching stationary operating conditions [27]. [Pg.459]

In this chapter some important equations for corrosion protection are derived which are relevant to the stationary electric fields present in electrolytically conducting media such as soil or aqueous solutions. Detailed mathematical derivations can be found in the technical literature on problems of grounding [1-5]. The equations are also applicable to low frequencies in limited areas, provided no noticeable current displacement is caused by the electromagnetic field. [Pg.535]

The predominant air pollution problem of the nineteenth century was smoke and ash from fhe burning of coal or oil in the boiler furnaces of stationary power plants, locomotives, and marine vessels, and in home heating fireplaces and furnaces. Great Britain took the lead in addressing this problem, and, in the words of Sir Hugh Beaver (3) ... [Pg.5]


See other pages where Problem stationary is mentioned: [Pg.323]    [Pg.323]    [Pg.187]    [Pg.507]    [Pg.897]    [Pg.40]    [Pg.1319]    [Pg.2332]    [Pg.2332]    [Pg.2340]    [Pg.2342]    [Pg.2348]    [Pg.2351]    [Pg.99]    [Pg.126]    [Pg.579]    [Pg.108]    [Pg.131]    [Pg.585]    [Pg.66]    [Pg.368]    [Pg.406]    [Pg.548]    [Pg.99]    [Pg.99]    [Pg.442]    [Pg.410]    [Pg.562]    [Pg.436]    [Pg.144]    [Pg.365]    [Pg.96]    [Pg.486]    [Pg.374]    [Pg.138]    [Pg.212]    [Pg.419]   
See also in sourсe #XX -- [ Pg.507 ]

See also in sourсe #XX -- [ Pg.507 ]




SEARCH



Stationary solutions, boundary value problem

© 2024 chempedia.info