Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Probe contaminated

Trace contaminants such as host cell proteins (HCPs) and DNA are deterrnined by more specialized techniques. Host cell proteins are generally deterrnined using an immunochemical assay, in which an antibody preparation, raised against a mixture of the HCPs, is used to selectively detect the total level of HCPs in the product. DNA can be deterrnined using a labeled mixture, or probe, of complimentary DNA from the host cell. [Pg.198]

Laser ionization mass spectrometry or laser microprobing (LIMS) is a microanalyt-ical technique used to rapidly characterize the elemental and, sometimes, molecular composition of materials. It is based on the ability of short high-power laser pulses (-10 ns) to produce ions from solids. The ions formed in these brief pulses are analyzed using a time-of-flight mass spectrometer. The quasi-simultaneous collection of all ion masses allows the survey analysis of unknown materials. The main applications of LIMS are in failure analysis, where chemical differences between a contaminated sample and a control need to be rapidly assessed. The ability to focus the laser beam to a diameter of approximately 1 mm permits the application of this technique to the characterization of small features, for example, in integrated circuits. The LIMS detection limits for many elements are close to 10 at/cm, which makes this technique considerably more sensitive than other survey microan-alytical techniques, such as Auger Electron Spectroscopy (AES) or Electron Probe Microanalysis (EPMA). Additionally, LIMS can be used to analyze insulating sam-... [Pg.586]

The limitations of SIMS - some inherent in secondary ion formation, some because of the physics of ion beams, and some because of the nature of sputtering - have been mentioned in Sect. 3.1. Sputtering produces predominantly neutral atoms for most of the elements in the periodic table the typical secondary ion yield is between 10 and 10 . This leads to a serious sensitivity limitation when extremely small volumes must be probed, or when high lateral and depth resolution analyses are needed. Another problem arises because the secondary ion yield can vary by many orders of magnitude as a function of surface contamination and matrix composition this hampers quantification. Quantification can also be hampered by interferences from molecules, molecular fragments, and isotopes of other elements with the same mass as the analyte. Very high mass-resolution can reject such interferences but only at the expense of detection sensitivity. [Pg.122]

Perhaps the most significant complication in the interpretation of nanoscale adhesion and mechanical properties measurements is the fact that the contact sizes are below the optical limit ( 1 t,im). Macroscopic adhesion studies and mechanical property measurements often rely on optical observations of the contact, and many of the contact mechanics models are formulated around direct measurement of the contact area or radius as a function of experimentally controlled parameters, such as load or displacement. In studies of colloids, scanning electron microscopy (SEM) has been used to view particle/surface contact sizes from the side to measure contact radius [3]. However, such a configuration is not easily employed in AFM and nanoindentation studies, and undesirable surface interactions from charging or contamination may arise. For adhesion studies (e.g. Johnson-Kendall-Roberts (JKR) [4] and probe-tack tests [5,6]), the probe/sample contact area is monitored as a function of load or displacement. This allows evaluation of load/area or even stress/strain response [7] as well as comparison to and development of contact mechanics theories. Area measurements are also important in traditional indentation experiments, where hardness is determined by measuring the residual contact area of the deformation optically [8J. For micro- and nanoscale studies, the dimensions of both the contact and residual deformation (if any) are below the optical limit. [Pg.194]

In order to reduce the influence ol unfavorable stagnation regions and vortex structures with their risk for accumulation of contaminants, tests should be carried out to characterize the functioning of the bench. In connection with these tests, induction tests should also be performed. Here smoke (particles) generated outside the bench and the probe of a particle counter placed inside the bench in the critical regions can give valuable information. [Pg.933]

For various reasons, this type of anemometer is not a suitable instrument for practical measurements in the industrial environment. The thin wire probe is fragile and sensitive to contamination and is unsuited to rough industrial environments. The wire temperature is often too high for low-velocity measurements because a strong natural convection from the wire causes errors. Temperature compensation, to correct for ambient air temperature fluctuations may not be available or may not cover the desired operating range. [Pg.1153]

If the instrument indicates current surge in an air-free system, it generally implies hydrogen sulfide contamination, but the galvanic probe is usually best suited to detect corrosion influenced by oxygen contamination. [Pg.1313]

In large boiler plants, carryover is measured by employing a singleport sampling nozzle connected to a steam supply line between the top drum and the superheater. Sampling from superheaters is difficult, however, because a pump is needed to inject cool condensate water into a double-walled sample probe (via an attemperating nozzle). This is to remove the degrees of superheat and thus reduce the tendency for any contaminants to deposit in or on the sample probe, rather than be collected with the steam. [Pg.602]

The high-high probe is completely independent of the other probes and is hardwired to shut down the system completely, independent of the computer. (In the preliminary safety review, the hazards associated with HF overfeed were identified as important thus the independent high-high shutdown probe system was installed.) All systems are designed to fail into safe conditions. The HF control valves are air operated and of a design that makes it impossible for HF to contaminate the air supply. [Pg.534]

TOF-SIMS can be applied to identify a variety of molecular fragments, originating from various molecular surface contaminations. It also can be used to determine metal trace concentrations at the surface. The use of an additional high current sputter ion source allows the fast erosion of the sample. By continuously probing the surface composition at the actual crater bottom by the analytical primary ion beam, multi element depth profiles in well defined surface areas can be determined. TOF-SIMS has become an indispensable analytical technique in modem microelectronics, in particular for elemental and molecular surface mapping and for multielement shallow depth profiling. [Pg.33]

When the aim is isolation for identification by direct probe insertion mass spectrometry (MS), plastic materials, filter papers, and blenders should be avoided to prevent contamination during extraction and chromatography. It is also very important to avoid the cis-trans isomerization of carotenoids in solution, which is accelerated by heat, light, acids, and active surfaces. Therefore, a pure carotenoid or even a crude extract should never be stored in solution it should be kept completely dry in an inert atmosphere at low temperature. [Pg.449]

Kasai Y, Y Takahata, M Manefield, K Watanabe (2006) RNA-based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated groundwater. Appl Environ Microbiol 72 3586-3592. [Pg.635]


See other pages where Probe contaminated is mentioned: [Pg.287]    [Pg.333]    [Pg.118]    [Pg.231]    [Pg.243]    [Pg.667]    [Pg.72]    [Pg.287]    [Pg.333]    [Pg.118]    [Pg.231]    [Pg.243]    [Pg.667]    [Pg.72]    [Pg.1047]    [Pg.542]    [Pg.1208]    [Pg.355]    [Pg.209]    [Pg.124]    [Pg.127]    [Pg.376]    [Pg.396]    [Pg.396]    [Pg.230]    [Pg.51]    [Pg.418]    [Pg.134]    [Pg.518]    [Pg.127]    [Pg.10]    [Pg.1121]    [Pg.1066]    [Pg.49]    [Pg.141]    [Pg.162]    [Pg.558]    [Pg.269]    [Pg.22]    [Pg.60]    [Pg.13]    [Pg.369]    [Pg.621]    [Pg.623]    [Pg.628]    [Pg.10]   
See also in sourсe #XX -- [ Pg.120 ]




SEARCH



Contaminants, laser probe

Contaminants, laser probe determination

Probe organic contaminant

© 2024 chempedia.info