Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pressure region

Correlation and compilation of vapor-pressure data for pure fluids. Normal and low pressure region. [Pg.7]

A component in a vapor mixture exhibits nonideal behavior as a result of molecular interactions only when these interactions are very wea)c or very infrequent is ideal behavior approached. The fugacity coefficient (fi is a measure of nonideality and a departure of < ) from unity is a measure of the extent to which a molecule i interacts with its neighbors. The fugacity coefficient depends on pressure, temperature, and vapor composition this dependence, in the moderate pressure region covered by the truncated virial equation, is usually as follows ... [Pg.37]

Fig. XVII-1. Adsorption of N2 on rutile temperatures indicated are in degrees Kelvin. (a) Low-pressure region (b) high-pressure region. (From Ref. 1.). Fig. XVII-1. Adsorption of N2 on rutile temperatures indicated are in degrees Kelvin. (a) Low-pressure region (b) high-pressure region. (From Ref. 1.).
One may choose 6(Q,P,T) such that the integral equation can be inverted to give f Q) from the observed isotherm. Hobson [150] chose a local isotherm function that was essentially a stylized van der Waals form with a linear low-pressure region followed by a vertical step tod = 1. Sips [151] showed that Eq. XVII-127 could be converted to a standard transform if the Langmuir adsorption model was used. One writes... [Pg.656]

Cavitation damage is a fonn of deterioration associated with materials in rapidly moving liquid environments, due to collapse of cavities (or vapour bubbles) in the liquid at a solid-liquid interface, in the high-pressure regions of high flow. If the liquid in movement is corrosive towards the metal, the damage of the metal may be greatly increased (cavitation corrosion). [Pg.2732]

From the earliest days, the BET model has been subject to a number of criticisms. The model assumes all the adsorption sites on the surface to be energetically identical, but as was indicated in Section 1.5 (p. 18) homogeneous surfaces of this kind are the exception and energetically heterogeneous surfaces are the rule. Experimental evidence—e.g. in curves of the heat of adsorption as a function of the amount adsorbed (cf. Fig. 2.14)—demonstrates that the degree of heterogeneity can be very considerable. Indeed, Brunauer, Emmett and Teller adduced this nonuniformity as the reason for the failure of their equation to reproduce experimental data in the low-pressure region. [Pg.49]

Deviation from the standard isotherm in the high-pressure region offers a means of detecting the occurrence of capillary condensation in the crevices l>etween the particles of a solid and in any mesopores present within the particles themselves. A convenient device for detecting deviations from the standard is the t-plot . In the next section the nature and uses of t-plots will be discussed, together with a,-plots, a later development from them. As will l>e shown, both of these plots may l>e used not only for the detection of capillary condensation in mesopores, but also for showing up the presence of micropores and evaluating their volume. [Pg.94]

If micropores are introduced into a solid which originally gave a standard Type II isotherm, the uptake is enhanced in the low-pressure region and the isotherm is correspondingly distorted. The effect on the t-plot is indicated in... [Pg.96]

As will be demonstrated in Chapter 4, an isotherm which is reversible and of Type II is quite compatible with the presence of micropores. If such pores are present, the isotherm will be distorted in the low-pressure region, the value of c will be greatly enhanced, and the specific surface derived by the BET procedure will be erroneously high. In particular, a BET specific surface in excess of - 500m g" should be taken as a warning that... [Pg.103]

More often, however, microporosity is associated with an appreciable external surface, or with mesoporosity, or with both. The effect of microporosity on the isotherm will be seen from Fig. 4.11(a) and Fig. 4.12(a). In Fig. 4.11(a) curve (i) refers to a powder made up of nonporous particles and curve (ii) to a solid which is wholly microporous. However, if the particles of the powder are microporous (the total micropore volume being given by the plateau of curve (ii)), the isotherm will assume the form of curve (iii), obtained by summing curves (i) and (ii). Like isotherm (i), the composite isotherm is of Type II, but because of the contribution from the Type 1 isotherm, it has a steep initial portion the relative enhancement of adsorption in the low-pressure region will be reflected in a significantly increased value of the BET c-constant and a shortened linear branch of the BET plot. [Pg.210]

Statistically, in a high-pressure region, an ion will be struck by neutral molecules randomly from all angles. The ion receives as many collisions from behind as in front and as many collisions from one side as from the other. Therefore, it can be expected that the overall forward motion of the ion will be maintained but that the trajectory will be chaotic and similar to Brownian motion (Figure 49.4b). Overall, the ion trajectory can be expected to be approximately along the line of its initial velocity direction, since it is still influenced by the applied potential difference V. [Pg.375]

Smokeless Coanda Gas releases at base of elevated tulip create low pressure region. Gas film follows Coanda profile mixes with air and is ignited by pilot. [Pg.256]

Pressure ventilation The ventilation of a space by providing air movement from a high-pressure region to a low-pressure region. [Pg.1469]

Fig. 2.3. Experimental determination of shock-stress versus volume compression from propagating shock waves is accomplished by a series of experiments carried out at different loading pressures. In the figure, the solid lines connect individual pressure-volume points with the initial condition. These solid straight lines are Rayleigh lines. The dashed line indicates an extrapolation into an uninvestigated low pressure region. Such extrapolation is typical of much of the strong shock data. Fig. 2.3. Experimental determination of shock-stress versus volume compression from propagating shock waves is accomplished by a series of experiments carried out at different loading pressures. In the figure, the solid lines connect individual pressure-volume points with the initial condition. These solid straight lines are Rayleigh lines. The dashed line indicates an extrapolation into an uninvestigated low pressure region. Such extrapolation is typical of much of the strong shock data.
Fig. 3.4. Representative stress-particle velocity relations such as those shown in the relatively low shock-pressure region are used to determine impact stresses with good precision. Fig. 3.4. Representative stress-particle velocity relations such as those shown in the relatively low shock-pressure region are used to determine impact stresses with good precision.
To study the lowest pressure region from about 10 MPa, the acceleration loading pulse method previously used by Setchell [88S01] has been employed. In this case the slowly rising stress pulse from high quality fused quartz is in the form of a ramp in pressure. Hence, a continuous response can be determined to stresses up to about 3 GPa. [Pg.108]

A summary of peak pressure and mean bulk temperatures in the various fixtures is shown in Table 6.3. Included in the characterization is the peak pressure along the axial few millimeter region along the axis of the samples (called focus) for which the radial focusing produces a high pressure region for a period of about 100 ns. [Pg.159]

With the intake valve open, the piston movement to the right creates a low pressure region in the cylinder, which causes air and fuel to flow through the intake valve to fill the cylinder. [Pg.469]

Overpressure duration probably has some influence on ear damage, but no literature on this subject was found. Because the ear can respond to high frequencies, blast wave loading normally lies in the pressure region rather than in the impulse region. [Pg.354]

Fcr piping with air in streamline flow at absolute pressures in the range between 50 microns and 1 millimeter of mercury, the following is a recommended method. Calculation procedures in pressure regions below atmospheric are very limited and often not generally applicable to broad interpretations. [Pg.129]

Figure 10-102B. Maximum boiling rate in the low pressure region. (Used by permission Cichelli, M. T. and Bonilla, C. E. Transactions. AlChE, V. 41, No. 6, 1945. American Institute of Chemical Engineers. All rights reserved.)... Figure 10-102B. Maximum boiling rate in the low pressure region. (Used by permission Cichelli, M. T. and Bonilla, C. E. Transactions. AlChE, V. 41, No. 6, 1945. American Institute of Chemical Engineers. All rights reserved.)...
Any matter tends to move in the direction in which it is pushed, and, in particular, because of the effects of friction, any fluid will only flow from high-pressure to lower-pressure regions. Again, the rate of flow will vary directly with pressure differences, and inversely with any resistances to this flow. [Pg.311]


See other pages where Pressure region is mentioned: [Pg.449]    [Pg.100]    [Pg.111]    [Pg.204]    [Pg.250]    [Pg.260]    [Pg.371]    [Pg.371]    [Pg.377]    [Pg.382]    [Pg.36]    [Pg.26]    [Pg.290]    [Pg.328]    [Pg.531]    [Pg.1889]    [Pg.1900]    [Pg.2039]    [Pg.364]    [Pg.379]    [Pg.382]    [Pg.222]    [Pg.125]    [Pg.252]    [Pg.233]    [Pg.303]    [Pg.303]    [Pg.1185]   
See also in sourсe #XX -- [ Pg.365 ]




SEARCH



Electrospray atmospheric pressure region

In low pressure regions

Interface region pressure

Pressure Drop and Acceleration Length in Developing Regions

Pressure coefficient, transition region

Temperature-pressure regions

© 2024 chempedia.info