Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pressure recompression

The top product recycle mode in Figure 11.12 brings part of the permeate stream at a lower pressure to join the feed suream at a higher pressure. Thus, additional energy external to the membrane reactor will be required to recompress the recycled permeate. On the contrary, in the bottom product recycle, also shown in Figure 11.12, only the transmembrane pressure difference and the longitudinal pressure drop need to be overcome between the recycled portion of the bottom product (or retentate) and the feed. Therefore, the required pressure recompression is expected to be small compared to the top product recycle mode. [Pg.528]

Absorber oil units offer the advantage that Hquids can be removed at the expense of only a small (34—69 kPa (4.9—10.0 psi)) pressure loss in the absorption column. If the feed gas is available at pipeline pressure, then Httle if any recompression is required to introduce the processed natural gas into the transmission system. However, the absorption and subsequent absorber-oil regeneration process tends to be complex, favoring the simpler, more efficient expander plants. Separations using soHd desiccants are energy-intensive because of the bed regeneration requirements. This process option is generally considered only in special situations such as hydrocarbon dew point control in remote locations. [Pg.172]

Condensable Hquids also are recovered from high pressure gas reservoirs by retrograde condensation. In this process, the high pressure fluid from the reservoir produces a Hquid phase on isothermal expansion. As the pressure decreases isotherm ally the quantity of the Hquid phase increases to a maximum and then decreases to disappearance. In the production of natural gas Hquids from these high pressure wells, the well fluids are expanded to produce the optimum amount of Hquid. The Hquid phase then is separated from the gas for further processing. The gas phase is used as a raw material for one of the other recovery processes, as fuel, or is recompressed and returned to the formation. [Pg.184]

Evaporative crystalli rs generate supersaturation by removing solvent, thereby increasing solute concentration. These crystallizers may be operated under vacuum, and, ia such circumstances, it is necessary to have a vacuum pump or ejector as a part of the unit. If the boiling poiat elevation of the system is low (that is, the difference between the boiling poiat of a solution ia the crystallizer and the condensation temperature of pure solvent at the system pressure), mechanical recompression of the vapor obtained from solvent evaporation can be used to produce a heat source to drive the operation. [Pg.356]

If the power requirement of the gaseous diffusion process were no greater than the power required to recompress the stage upflow from the pressure on the low-pressure side of the barrier to that on the high-pressure side, then the power requirement of the stage would be Z RTLq (1 /r) for the case where the compression is performed isotherm ally. The power requirement per unit of separative capacity would then be given simply by the ratio... [Pg.87]

The expanders also remove energy from the gas, using that energy to drive a centrifugal compressor for pipeline recompression. As gas expands through the expander s inlet nozzle, pressure drops from 90 bar (1,300 psig) to 55 bar (800 psig). Temperature drops as well, below the dewpoint, and the liquids formed can be separated from the main gas stream. [Pg.451]

Evaporators require a source of heat to operate. This heat may be supplied from a boiler, gas turbine, vapor compressor, other evaporator, or a combination of sources. Multiple effect evaporators are very popular when cheap, high pressure steam is available to heat the system. A Mechanical Vapor Recompression evaporator would use electricity or a gas turbine to drive a compressor that recycles the heat in the evaporator. [Pg.95]

The gas is routed through heat exchangers where it is cooled by the residue gas, and condensed liquids are recovered in a cold separator at appro.ximately -90°F. These liquids are injected into the de-methanizer at a level where the temperature is approximately -90°F. The gas is (hen expanded (its pressure is decreased from inlet pressure to 22.3 psig) through an expansion valve or a turboexpander. The turboexpander Lises the energy removed from the gas due to the pressure drop to drive a compressor, which helps recompress the gas to sales pressure. The cold gas f-)50°F) then enters the de-methanizer column at a pressure and temperature condition where most of the ethanes-plus Lire in the liquid state. [Pg.248]

In the earliest applications of numerical methods for the computation of blast waves, the burst of a pressurized sphere was computed. As the sphere s diameter is reduced and its initial pressure increased, the problem more closely approaches a point-source explosion problem. Brode (1955,1959) used the Lagrangean artificial-viscosity approach, which was the state of the art of that time. He analyzed blasts produced by both aforementioned sources. The decaying blast wave was simulated, and blast wave properties were registered as a function of distance. The code reproduced experimentally observed phenomena, such as overexpansion, subsequent recompression, and the formation of a secondary wave. It was found that the shape of the blast wave at some distance was independent of source properties. [Pg.105]

Because of compressor economics, staging membranes with recompression is unusual. Designers can assume that a flow sheet that mixes unlike streams or reduces pressure through a throttling valve will increase cost in most cases. [Pg.62]

For heat pumping to be economic on a stand-alone basis, it must operate across a small temperature difference, which for distillation means close boiling mixtures. In addition, the use of the scheme is only going to make sense if the column is constrained to operate either on a stand-alone basis or at a pressure that would mean it would be across the pinch. Otherwise, heat integration with the process might be a much better option. Vapor recompression schemes for distillation therefore only make sense for the distillation of close boiling mixtures in constrained situations3. [Pg.449]


See other pages where Pressure recompression is mentioned: [Pg.528]    [Pg.18]    [Pg.528]    [Pg.18]    [Pg.348]    [Pg.510]    [Pg.94]    [Pg.402]    [Pg.415]    [Pg.229]    [Pg.99]    [Pg.378]    [Pg.418]    [Pg.56]    [Pg.326]    [Pg.332]    [Pg.85]    [Pg.475]    [Pg.1668]    [Pg.2001]    [Pg.2052]    [Pg.2136]    [Pg.2137]    [Pg.237]    [Pg.231]    [Pg.249]    [Pg.754]    [Pg.828]    [Pg.1084]    [Pg.393]    [Pg.397]    [Pg.16]    [Pg.62]    [Pg.196]    [Pg.74]    [Pg.79]    [Pg.196]    [Pg.297]    [Pg.232]    [Pg.245]   
See also in sourсe #XX -- [ Pg.528 ]




SEARCH



Minimizing Pressure and Vapor Recompression

© 2024 chempedia.info