Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Preparation, viii

The same apparatus is employed as in the preparation of dichlorohydrin (preparation VIII, p. 29). [Pg.72]

OB to COj -45%, yel rhomb crysts, mp 122°, d 1.76g/cc. In recent years PA has fallen out of favor as an expl. Consequently, modern literature on PA is not voluminous and this article of necessity draws heavily upon older literature. The article is divided into the following sections I. Historical II. Physical Properties, Solubility and Toxicity III. Thermochemical Data IV. Chemical Properties V. Specifications Analytical VI. Uses VII. Preparation VIII. Explosive Characteristics and IX. References... [Pg.763]

R. Yamamoto, Studies on the stability of dry preparations. VIII. Relation between the moisture content and stability of ascorbic acid, sodium ascorbate and their diluted preparations [in Japanese], Yakuzaigaku 19, 39-43 (1959). [Pg.243]

Hinsberg procedure for the separation of primary, secondary and tertiary amines is given under (viii) above, and this method may be used. The following experimental details may, however, be found useful for the preparation of derivatives of primary and secondary amines. [Pg.653]

Phthalic anhydride may be used as the carbonyl compound in the Perkin reaction see the preparation of phthalylacetic acid under Ninhytlrin (Section VIII,14),... [Pg.708]

To a suspension of a tinc-copper couple in 150 ml of 100 ethanol, prepared from 80 g of zinc powder (see Chapter II, Exp. 18), was added at room temperature 0.10 mol of the acetylenic chloride (see Chapter VIII-2, Exp. 7). After a few minutes an exothermic reaction started and the temperature rose to 45-50°C (note 1). When this reaction had subsided, the mixture was cooled to 35-40°C and 0,40 mol of the chloride was added over a period of 15 min, while maintaining the temperature around 40°C (occasional cooling). After the addition stirring was continued for 30 min at 55°C, then the mixture was cooled to room temperature and the upper layer was decanted off. The black slurry of zinc was rinsed five times with 50-ml portions of diethyl ether. The alcoholic solution and the extracts were combined and washed three times with 100-ml portions of 2 N HCl, saturated with ammonium chloride. [Pg.191]

In the flask were placed 0.40 mol of dry, powdered copper(I) cyanide, 9 g of anhydrous lithium bromide (note 1), 50 ml of dry THF and 0.30 mol of l-bromo-2--heptyne (prepared from the corresponding alcohol and PBrs in diethyl ether, see VIII-2, Exp. 10). The mixture was heated until an exothermic reaction started, which occurred at about 80°C. The solid dissolved gradually. The mixture was kept... [Pg.225]

A suspension of sodium amide in 500 ml of anhydrous liquid artmonia was prepared from 18 g of sodium (see Chapter II, Exp. 11). To the suspension was added in 10 min with swirling a mixture of 0.30 mol of 1-chloro-l-ethynylcyclohexane (see VIII-2, Exp. 27) and 50 ml of diethyl ether. The reaction was very vigorous and a thick suspension was formed. The greater part of the ammonia was evaporated by placing the flask in a water bath at 50°C. After addition of 500 ml of ice-water the product was extracted three times with diethyl ether. The ethereal extracts were dried over anhydrous KjCOj and subsequently concentrated in a water-pum vacuum. Distillation of the residue afforded the amine, b.p. 54°C/15 mmHg, n 1.4345, in 87% yield. [Pg.230]

The preparation of thiazole alcohols by reduction is also discussed in Chapter VIII. [Pg.525]

Immunoaffinity chromatography utilizes the high specificity of antigen—antibody interactions to achieve a separation. The procedure typically involves the binding, to a soHd phase, of a mouse monoclonal antibody which reacts either directly with the protein to be purified or with a closely associated protein which itself binds the product protein. The former approach has been appHed in the preparation of Factor VIII (43) and Factor IX (61) concentrates. The latter method has been used in the preparation of Factor VIII (42) by immobilization of a monoclonal antibody to von WiHebrand factor [109319-16-6] (62), a protein to which Factor VIII binds noncovalenfly. Further purification is necessary downstream of the immunoaffinity step to remove... [Pg.529]

Factor VIII, immunoglobulin, and albumin are all held as protein precipitates, the first as cryoprecipitate and the others as the Cohn fractions FI + II + III (or FII + III) and FIV + V (or FV), respectively (Table 7, Fig. 2). Similarly, Fractions FIVj + FIV can provide an intermediate product for the preparation of antithrombin III and a-1-proteinase inhibitor. This abiUty to reduce plasma to a number of compact, stable, intermediate products, together with the bacteriacidal properties of cold-ethanol, are the principal reasons these methods are stiU used industrially. [Pg.531]

Low Pressure Syntheses. The majority of metal carbonyls are synthesized under high pressures of CO. Early preparations of carbonyls were made under superpressures of 1 GPa (ca 10,000 atm). Numerous reports have appeared in the Hterature concerning low pressure syntheses of metal carbonyls, but the reactions have been restricted primarily to the carbonyls of the transition metals of Groups 8—10 (VIII). A procedure for preparing Mn2(CO)2Q, however, from commercially available methylcyclopentadienyknanganese tricarbonyl [12108-13-3] and atmospheric pressures of CO has been reported (117). The carbonyls of mthenium (118,119), rhodium (120,121), and iridium (122,123) have been synthesized in good yields employing low pressure techniques. In all three cases, very low or even atmospheric pressures of CO effect carbonylation. Examples of successful low pressure syntheses are... [Pg.68]

Dehalogenation of monochlorotoluenes can be readily effected with hydrogen and noble metal catalysts (34). Conversion of -chlorotoluene to Ncyanotoluene is accompHshed by reaction with tetraethyl ammonium cyanide and zero-valent Group (VIII) metal complexes, such as those of nickel or palladium (35). The reaction proceeds by initial oxidative addition of the aryl haHde to the zerovalent metal complex, followed by attack of cyanide ion on the metal and reductive elimination of the aryl cyanide. Methylstyrene is prepared from -chlorotoluene by a vinylation reaction using ethylene as the reagent and a catalyst derived from zinc, a triarylphosphine, and a nickel salt (36). [Pg.53]

Cyclopentadiene itself has been used as a feedstock for carbon fiber manufacture (76). Cyclopentadiene is also a component of supported metallocene—alumoxane polymerization catalysts in the preparation of syndiotactic polyolefins (77), as a nickel or iron complex in the production of methanol and ethanol from synthesis gas (78), and as Group VIII metal complexes for the production of acetaldehyde from methanol and synthesis gas (79). [Pg.435]

The fact that the isomeric structure of azolides is thermodynamically controlled has been used by Olofson and Kendall to prepare 1-alkylazoles regioselectively (70JOC2246). An asymmetric pyrazole yields two alkylated derivatives (Scheme 21 see Section 4.04.2.1.3 (viii)), but the alkylation with a powerful alkylating agent of the acetylated derivative leads to the less abundant isomer via the salt (249), which is too unstable to be isolated. [Pg.232]


See other pages where Preparation, viii is mentioned: [Pg.762]    [Pg.326]    [Pg.762]    [Pg.326]    [Pg.712]    [Pg.803]    [Pg.211]    [Pg.70]    [Pg.98]    [Pg.121]    [Pg.144]    [Pg.159]    [Pg.163]    [Pg.163]    [Pg.164]    [Pg.165]    [Pg.168]    [Pg.170]    [Pg.176]    [Pg.190]    [Pg.191]    [Pg.225]    [Pg.229]    [Pg.57]    [Pg.529]    [Pg.532]    [Pg.533]    [Pg.534]    [Pg.534]    [Pg.385]    [Pg.385]    [Pg.177]    [Pg.196]    [Pg.225]    [Pg.232]   
See also in sourсe #XX -- [ Pg.97 , Pg.107 , Pg.109 , Pg.141 , Pg.158 , Pg.169 , Pg.204 ]




SEARCH



© 2024 chempedia.info