Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Preparation malonic ester synthesis

The malonic ester synthesis is a method for the preparation of carboxylic acids and is represented by the general equation... [Pg.897]

Among the methods for preparing carboxylic acids carboxylation of a Grignard reagent and preparation and hydrolysis of a nitrile convert RBr to RCO2H The malonic ester synthesis converts RBr to RCH2CO2H... [Pg.897]

The malonic ester synthesis has been adapted to the preparation of cyclo alkanecarboxyhc acids from dihaloalkanes... [Pg.899]

Malonic ester synthesis (Section 21 7) Synthetic method for the preparation of carboxylic acids involving alkylation of the enolate of diethyl malonate... [Pg.1288]

In a typical example of the malonic ester synthesis, 6-heptenoic acid has been prepared from 5-bromo-l-pentene ... [Pg.898]

One of the oldest and best known carbonyl alkylation reactions is the malonic ester synthesis, a method for preparing a carboxylic add from an alkyl halide while lengthening the carbon chain by two atoms. [Pg.856]

The malonic ester synthesis can also be used to prepare cydoalkane-carboxvlic acids. For example, when 1,4-dibromobutanc is treated with diethyl malonate in the presence of 2 equivalents of sodium ethoxide base, the second alkylation step occurs intrcunotecidariy to yield a cyclic product. Hydrolysis and decarboxylation then give cvclopentanecarboxylic acid. Three-, four-, five-. [Pg.857]

Using the Malonic Ester Synthesis to Prepare a Carboxylic Acid... [Pg.858]

How would you prepare heptanoic acid using a malonic ester synthesis ... [Pg.858]

Problem 22.10 How could you use a malonic ester synthesis to prepare the following compounds Show all steps. [Pg.858]

Monoalkylated and dialkylated acetic acids can be prepared by the malonic ester synthesis, but trialkylated acetic acids (R3CCO2H) can t be prepared. Explain. [Pg.858]

Both the malonic ester synthesis and the acetoacetic ester synthesis are easy to cany out because they involve unusually acidic dicarbonyi compounds. As a result, relatively mild bases such as sodium ethoxide in ethanol as solvent can be used to prepare the necessary enolate ions. Alternatively, however, it s also possible in many cases to directly alkylate the a position of monocarbonyl compounds. A strong, stericaliy hindered base such as LDA is needed so that complete conversion to the enolate ion takes place rather than a nucleophilic addition, and a nonprotic solvent must be used. [Pg.861]

Which, If any, of the following compounds can be prepared by a malonic ester synthesis Show the alkyl halide you would use in each case. [Pg.870]

A more general method for preparation ofa-amino acids is the amidotnalmatesynthesis, a straightforward extension of the malonic ester synthesis (Section 22.7). The reaction begins with conversion of diethyl acetamidomalonate into an eno-late ion by treatment with base, followed by S 2 alkylation with a primary alkyl halide. Hydrolysis of both the amide protecting group and the esters occurs when the alkylated product is warmed with aqueous acid, and decarboxylation then takes place to vield an a-amino acid. For example aspartic acid can be prepared from, ethyl bromoacetate, BrCh CCHEt ... [Pg.1026]

An important example of this reaction is the malonic ester synthesis, in which both Z groups are COOEt. The product can be hydrolyzed and decarboxylated (12-38) to give a carboxylic acid. An illustration is the preparation of 2-ethyl-pentanoic acid from malonic ester ... [Pg.549]

Compounds 137 and 138 are thus synthons for carboxylic acids this is another indirect method for the a alkylation of a carboxylic acid, representing an alternative to the malonic ester synthesis (10-104) and to 10-106 and 10-109. The method can be adapted to the preparation of optically active carboxylic acids by the use of a chiral reagent. Note that, unlike 132, 137 can be alkylated even if R is alkyl. However, the C=N bond of 137 and 138 cannot be effectively reduced, so that aldehyde synthesis is not feasible here. ... [Pg.559]

Malonic esters have two ester groups, each of which may react as in the acetoacetic ester synthesis due to their similar structure (see the preceding section). The malonic ester synthesis provides a method for preparing a substituted acetic acid. Figure 15-14 shows the structure of one type of malonic ester. Figure 15-15 outlines the basic malonic ester synthesis. May repeat in that figure refers to the reaction with a second molecule of RX (or R X). [Pg.269]

Carboxylic acids can be alkylated in the a position by conversion of their salts to dianions [which actually have the enolate structures RCH=C(0 )21497] by treatment with a strong base such as lithium diisopropylamide.1498 The use of Li as the counterion is important, because it increases the solubility of the dianionic salt. The reaction has been applied1499 to primary alkyl, allylic, and benzylic halides, and to carboxylic acids of the form RCHjCOOH and RR"CHCOOH.1454 This method, which is an example of the alkylation of a dianion at its more nucleophilic position (see p. 368), is an alternative to the malonic ester synthesis (0-94) as a means of preparing carboxylic acids and has the advantage that acids of the form RR R"CCOOH can also be prepared. In a related reaction, methylated aromatic acids can be alkylated at the methyl group by a similar procedure.1500... [Pg.474]

Chain extension.1 An alternative lo the malonic ester synthesis involves ttlkylnliim of r-bmyl lithioacetate, Yields arc improved by preparation of the enolate With l.il( A (4, 306) ui 78. Alkylaliun proceeds in highesl yields at -78 to -35"... [Pg.67]

The heart of the preparation of capsaicin is a malonic ester synthesis. The first step is bromination of the primary alcohol by phosphorous tribromide. The resulting primary alkyl bromide is used to alkylate the sodium salt of diethyl malonate. A substituted malonic acid derivative is obtained following basic hydrolysis of the ester groups. [Pg.594]

Fig. 13.36. Malonic ester synthesis of altylated acetic acids I preparation of alkylated malonic esters. Fig. 13.36. Malonic ester synthesis of altylated acetic acids I preparation of alkylated malonic esters.
Although the acetoacetic ester synthesis and the malonic ester synthesis are used to prepare ketones and carboxylic acids, the same alkylation, without the hydrolysis and decarboxylation steps, can be employed to prepare substituted /3-ketoesters and /3-diesters. In fact, any compound with two anion stabilizing groups on the same carbon can be deprotonated and then alkylated by the same general procedure. Several examples are shown in the following equations. The first example shows the alkylation of a /3-ketoester. Close examination shows the similarity of the starting material to ethyl acetoacetate. Although sodium hydride is used as a base in this example, sodium ethoxide could also be employed. [Pg.870]

Decide which synthesis to use. The acetoacetic ester synthesis is used to prepare methyl ketones, and the malonic ester synthesis is used to prepare carboxylic acids. Both syntheses provide a method to add alkyl groups to the a-carbon. Therefore, next identify the group or groups that must be added to the a-carbon. Remember that the a-carbon is the nucleophile, so the groups to be attached must be the electrophile in the Sn2 reaction they must have a leaving group bonded to the carbon to which the new bond is to be formed. [Pg.871]

A third amino acid synthesis begins with diethyl a-bromomalonate. First the Br is replaced by a protected amino group using the Gabriel synthesis (see Section 10.6). Then the side chain of the amino acid is added by an alkylation reaction that resembles the malonic ester synthesis (see Section 20.4). Hydrolysis of the ester and amide bonds followed by decarboxylation of the diacid produces the amino acid. An example that shows the use of this method to prepare aspartic acid is shown in the following sequence ... [Pg.1133]

Show how the malonic ester synthesis is used to prepare 2-benzylbutanoic acid. [Pg.1081]


See other pages where Preparation malonic ester synthesis is mentioned: [Pg.549]    [Pg.469]    [Pg.465]    [Pg.479]    [Pg.596]    [Pg.168]   
See also in sourсe #XX -- [ Pg.847 , Pg.848 , Pg.849 ]

See also in sourсe #XX -- [ Pg.847 , Pg.848 , Pg.849 ]




SEARCH



Esters malonic ester synthesis

Esters preparation

Malonate ester synthesis

Malonate esters

Malonic ester synthesi

Malonic ester synthesis

Malonic ester—

Malonic synthesis

Preparation Synthesis

© 2024 chempedia.info