Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Power elementary

Injection of Water or Steam at the Gas Turbine Compressor Exit. Steam injection or water injection has been often used to augment the power generated from the turbine as seen in Figure 2-42. Steam can be generated from the exhaust gases of the gas turbine. The HRSG for such a unit is very elementary as the pressures are low. This technique augments power and also increases the turbine efficiency. The amount of steam is limited to about... [Pg.103]

One begins by realizing that the primary winding behaves like an elementary induetor during the power switeh s on-time and obeys the relationship in Equation 3.24 ... [Pg.42]

An example of an elementary voltage feedbaek applieation is the nonisolated, single-output switehing power supply. If we negleet the error amplifier eompensation, then the design is quite simple. Tet us examine a situation where a 5 V output is regulated and a 2.5 V referenee is provided within the eontrol IC. This ean be seen in Figure 3-43. [Pg.76]

The zero current switching (ZCS) quasi-resonant (QR) switching power supply forces the current through the power switch to be sinusoidal. The transistor is always switched when the current through the power switch is zero. To understand the operation of a ZCS QR switching power supply, it is best to study in detail the operation of its most elementary topology—the ZCS QR buck converter (and its waveforms) as seen in Figure 4-10. [Pg.151]

With the availabihty of computers, the transfer matrix method [14] emerged as an alternative and powerful technique for the study of cooperative phenomena of adsorbates resulting from interactions [15-17]. Quantities are calculated exactly on a semi-infinite lattice. Coupled with finite-size scaling towards the infinite lattice, the technique has proved popular for the determination of phase diagrams and critical-point properties of adsorbates [18-23] and magnetic spin systems [24—26], and further references therein. Application to other aspects of adsorbates, e.g., the calculation of desorption rates and heats of adsorption, has been more recent [27-30]. Sufficient accuracy can usually be obtained for the latter without scaling and essentially exact results are possible. In the following, we summarize the elementary but important aspects of the method to emphasize the ease of application. Further details can be found in the above references. [Pg.446]

From this expression, it is obvious that the rate is proportional to the concentration of A, and k is the proportionality constant, or rate constant, k has the units of (time) usually sec is a function of [A] to the first power, or, in the terminology of kinetics, v is first-order with respect to A. For an elementary reaction, the order for any reactant is given by its exponent in the rate equation. The number of molecules that must simultaneously interact is defined as the molecularity of the reaction. Thus, the simple elementary reaction of A P is a first-order reaction. Figure 14.4 portrays the course of a first-order reaction as a function of time. The rate of decay of a radioactive isotope, like or is a first-order reaction, as is an intramolecular rearrangement, such as A P. Both are unimolecular reactions (the molecularity equals 1). [Pg.432]

Figures 6.4 shows some of the variety of possible shapes of P f) for elementary rules shown in the figures are the power spectra for rules Rll, R56, R150 and R200. The plots were generated for lattice size N = 2048, ignoring the first 15 transient steps and averaging a total of 20 runs. Also, since there are only N data points but 2N real Fourier components, half of the components are redundant. Thus, only the first half of the components are shown (see [H89b] or [H87] for a complete set of power spectra). Figures 6.4 shows some of the variety of possible shapes of P f) for elementary rules shown in the figures are the power spectra for rules Rll, R56, R150 and R200. The plots were generated for lattice size N = 2048, ignoring the first 15 transient steps and averaging a total of 20 runs. Also, since there are only N data points but 2N real Fourier components, half of the components are redundant. Thus, only the first half of the components are shown (see [H89b] or [H87] for a complete set of power spectra).
Much of the regularity in classical systems can often be best discerned directly by observing their spatial power spectra (see section 6.3). We recall that in the simplest cases, the spectra consist of few isolated discrete peaks in more complex chaotic evolutions, we might get white noise patterns (such as for elementary additive rules). A discrete fourier transform (/ ) of a typical quantum state is defined in the most straightforward manner ... [Pg.418]

As already mentioned, the enthalpy change A//° involved in an elementary propagation step corresponds to the equilibrium constant S. The parameter a, however, is purely entropically influenced mainly due to the steric restrictions during the formation of a helical nucleus. The determination of a, since it is related to the same power (3n - 2) of s, requires the consideration of the dependence of the thermodynamic parameters on the chain length (Eq. (9 a)). [Pg.193]

Object.—Quantum statistics was discussed briefly in Chapter 12 of The Mathematics of Physics and Chemistry, and as far as elementary treatments of quantum statistics are concerned,1 that introductory discussion remains adequate. In recent years, however, a spectacular development of quantum field theory has presented us with new mathematical tools of great power, applicable at once to the problems of quantum statistics. This chapter is devoted to an exposition of the mathematical formalism of quantum field theory as it has been adapted to the discussion of quantum statistics. The entire structure is based on the concepts of Hilbert space, and we shall devote a considerable fraction of the chapter to these concepts. [Pg.426]

The most common states of a pure substance are solid, liquid, or gas (vapor), state property See state function. state symbol A symbol (abbreviation) denoting the state of a species. Examples s (solid) I (liquid) g (gas) aq (aqueous solution), statistical entropy The entropy calculated from statistical thermodynamics S = k In W. statistical thermodynamics The interpretation of the laws of thermodynamics in terms of the behavior of large numbers of atoms and molecules, steady-state approximation The assumption that the net rate of formation of reaction intermediates is 0. Stefan-Boltzmann law The total intensity of radiation emitted by a heated black body is proportional to the fourth power of the absolute temperature, stereoisomers Isomers in which atoms have the same partners arranged differently in space, stereoregular polymer A polymer in which each unit or pair of repeating units has the same relative orientation, steric factor (P) An empirical factor that takes into account the steric requirement of a reaction, steric requirement A constraint on an elementary reaction in which the successful collision of two molecules depends on their relative orientation. [Pg.967]

Elementary reactions have integral orders. However, for overall reactions the rate often cannot be written as a simple power law. In this case orders will generally assume non-integral values that are only valid within a narrow range of conditions. This is often satisfactory for the description of an industrial process in terms of a power-rate law. The chemical engineer in industry uses it to predict how the reactor behaves within a limited range of temperatures and pressures. [Pg.27]

The SCR catalyst is considerably more complex than, for example, the metal catalysts we discussed earlier. Also, it is very difficult to perform surface science studies on these oxide surfaces. The nature of the active sites in the SCR catalyst has been probed by temperature-programmed desorption of NO and NH3 and by in situ infrared studies. This has led to a set of kinetic parameters (Tab. 10.7) that can describe NO conversion and NH3 slip (Fig. 10.16). The model gives a good fit to the experimental data over a wide range, is based on the physical reality of the SCR catalyst and its interactions with the reacting gases and is, therefore, preferable to a simple power rate law in which catalysis happens in a black box . Nevertheless, several questions remain unanswered, such as what are the elementary steps and what do the active site looks like on the atomic scale ... [Pg.399]

In the United States, the Department of Defense (DOD) and the Department of Energy (DOE) promoted in 1992 the Defense Advanced Research Project Agency (DARPA) program to develop a DMFC for portable and mobile applications. Several institutions are involved (IFC, JPL, LANE, Giner, Inc.) and small stacks (up to 10 elementary cells) were built by IFC and JPL. The performances are quite encouraging, with power densities of 250 mW/cm at 0.5 V. More details are given in Section V.2. [Pg.67]

Besides the elementary properties of index permutational symmetry considered in eq. (7), and intrinsic point group symmetry of a given tensor accounted for in eqs. (8)-(14), much more powerful group-theoretical tools [6] can be developed to speed up coupled Hartree-Fock (CHF) calculations [7-11] of hyperpolarizabilities, which are nowadays almost routinely periformed in a number of studies dealing with non linear response of molecular systems [12-35], in particular at the self-consistent-field (SCF) level of accuracy. [Pg.281]

FTICR-MS is capable of powerful mixture analysis, due to its high mass range and ultrahigh mass resolving power. However, in many cases it is still desirable to couple a chromatographic interface to the mass spectrometer for sample purification, preconcentration, and mixture separation. In the example given above, DTMS under HRMS conditions provides the elementary composition. Apart from DTMS, PyGC-MS can be performed to preseparate the mixture of molecules and to obtain the MS spectrum of a purified unknown. Direct comparison with the pure reference compound remains the best approach to obtain final proof. [Pg.398]

Contents Four Grades of Fire Elementary Fire Celestial Fire Central Fire Secret Fire Secret fire in the body Powers of the secret fire... [Pg.390]

This chapter reviews the recent progress in in situ STM studies of model catalysts. From revealing reaction pathways to delineating active sites, in situ STM studies in UHV and on extended surfaces have demonstrated their power to solve fundamental questions in catalysis and enhance our understanding of the elementary steps of... [Pg.91]

To solve problems involving calibration equations using multivariate linear models, we need to be able to perform elementary operations on sets or systems of linear equations. So before using our newly discovered powers of matrix algebra, let us solve a problem using the algebra many of us learned very early in life. [Pg.12]

Put into this form it is clear that forming the definite integral of this function (to form the sum of squares) is relatively straightforward, we merely need to apply the formula for the integral of a power of a variable to each term in equation 68-24. We recall that from elementary calculus the integral of a power of a variable is... [Pg.462]


See other pages where Power elementary is mentioned: [Pg.99]    [Pg.360]    [Pg.362]    [Pg.15]    [Pg.26]    [Pg.820]    [Pg.922]    [Pg.498]    [Pg.1065]    [Pg.130]    [Pg.220]    [Pg.303]    [Pg.97]    [Pg.98]    [Pg.416]    [Pg.102]    [Pg.330]    [Pg.29]    [Pg.645]    [Pg.113]    [Pg.58]    [Pg.172]    [Pg.50]    [Pg.335]    [Pg.535]    [Pg.64]    [Pg.220]    [Pg.178]    [Pg.106]   


SEARCH



Power Law Models and Elementary Rate Laws

© 2024 chempedia.info