Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potentiostat cyclic voltammetry

Although it is not necessary, the galvanostat-potentiostat is better to incorporate a function generator in order to allow for cyclic voltammetry or other transient electrochemical techniques. [Pg.549]

Early studies of ET dynamics at externally biased interfaces were based on conventional cyclic voltammetry employing four-electrode potentiostats [62,67 70,79]. The formal pseudo-first-order electron-transfer rate constants [ket(cms )] were measured on the basis of the Nicholson method [99] and convolution potential sweep voltammetry [79,100] in the presence of an excess of one of the reactant species. The constant composition approximation allows expression of the ET rate constant with the same units as in heterogeneous reaction on solid electrodes. However, any comparison with the expression described in Section II.B requires the transformation to bimolecular units, i.e., M cms . Values of of the order of 1-2 x lO cms (0.05 to O.IM cms ) were reported for Fe(CN)g in the aqueous phase and the redox species Lu(PC)2, Sn(PC)2, TCNQ, and RuTPP(Py)2 in DCE [62,70]. Despite the fact that large potential perturbations across the interface introduce interferences in kinetic analysis [101], these early estimations allowed some preliminary comparisons to established ET models in heterogeneous media. [Pg.203]

Fig. 5.18 Potentiostatic methods (A) single-pulse method, (B), (C) double-pulse methods (B for an electrocrystallization study and C for the study of products of electrolysis during the first pulse), (D) potential-sweep voltammetry, (E) triangular pulse voltammetry, (F) a series of pulses for electrode preparation, (G) cyclic voltammetry (the last pulse is recorded), (H) d.c. polarography (the electrode potential during the drop-time is considered constant this fact is expressed by the step function of time—actually the potential increases continuously), (I) a.c. polarography and (J) pulse polarography... Fig. 5.18 Potentiostatic methods (A) single-pulse method, (B), (C) double-pulse methods (B for an electrocrystallization study and C for the study of products of electrolysis during the first pulse), (D) potential-sweep voltammetry, (E) triangular pulse voltammetry, (F) a series of pulses for electrode preparation, (G) cyclic voltammetry (the last pulse is recorded), (H) d.c. polarography (the electrode potential during the drop-time is considered constant this fact is expressed by the step function of time—actually the potential increases continuously), (I) a.c. polarography and (J) pulse polarography...
The electronic adsorption spectra for the complexes [Ir(OH)6]", where n = 0-2, have been resolved and peak maxima locations, molar extinction coefficients, oscillator strengths, and band half-widths calculated.44 Bands have been assigned in the main part to be one-electron MLCT transitions. Spectrophotometrically determined rate constants for the OH reduction of the IrVI and Irv complexes at 25 °C in 3M NaOH are (2.59 0.09) x 10—3 s—1 and (1.53 0.05) x 10 4 s 1 respectively. The activation energy for the reduction, Irv—>IrIV, is nAkcalmoC1. Cyclic voltammetry and potentiostatic coulometry of [Ir(OEI )r,]2 in 3M NaOH on a Pt electrode show that during the electro-oxidation compounds of Irv and IrVI are formed.45... [Pg.155]

Figure 2.15 Schematic representation of the equipment necessary to perform linear sweep voltammetry LSV) or cyclic voltammetry CV). WFG waveform generator, P potentiostat, CR chart recorder, EC electrochemical cell, WE working electrode, CE counter electrode, RE... Figure 2.15 Schematic representation of the equipment necessary to perform linear sweep voltammetry LSV) or cyclic voltammetry CV). WFG waveform generator, P potentiostat, CR chart recorder, EC electrochemical cell, WE working electrode, CE counter electrode, RE...
Polymer films were produced by anodic deposition by potentiostatic deposition onto a platinum electrode. Deposition was done from 1 M solutions of the monomer in 1M LiC104 in acetonitrile. The films were characterized by cyclic voltammetry and reflection infrared spectroscopy in an apparatus described elsewhere [15]. [Pg.84]

Cyclic voltammetry (CV) curves were recorded on a Kipp and Zonen BD91 X-Y recorder and the current-time transients resulting from the potential step experiments were recorded digitally. The apparatus used included a PAR Model 173 potentiostat and an IBM XT computer... [Pg.485]

As mentioned in potentiostatic current transient method, when the fractal dimension is determined by using diffusion-limited electrochemical technique, the diffusion layer length acts as a yardstick length.122 In the case of cyclic voltammetry, it was... [Pg.369]

The ohmic drop effect we are discussing deals only with the Ru portion ofthe cell resistance (Figure 1.5c). Indeed, the action of the potentiostat makes the working electrode potential independent not only of the possible shift of the counter electrode potential as the current varies, but also independent of the ohmic drop in the Rc portion of the cell resistance. In the case of cyclic voltammetry, the equation above becomes... [Pg.14]

Cyclic voltammetry was conducted using a Powerlab ADI Potentiostat interfaced to a computer. A typical three electrode system was used for the analysis Ag/AgCl electrode (2.0 mm) as reference electrode Pt disc (2.0 mm) as working electrode and Pt rod (2.0 mm) as auxiliary electrode. The supporting electrolyte used was a TBAHP/acetonitrile electrolyte-solvent system. The instrument was preset using a Metrohm 693 VA Processor. Potential sweep rate was 200 mV/s using a scan range of-1,800 to 1,800 mV. [Pg.179]

Cyclic voltammetry experiments were controlled using a Powerlab 4/20 interface and PAR model 362 scanning potentiostat with EChem software (v 1.5.2, ADlnstruments) and were carried out using a 1 mm diameter vitreous carbon working electrode, platinum counter electrode, and 2 mm silver wire reference electrode. The potential of the reference electrode was determined using the ferrocenium/ ferrocene (Fc+/Fc) couple, and all potentials are quoted relative to the SCE reference electrode. Against this reference, the Fc /Fc couple occrus at 0.38 V in acetonitrile and 0.53 V in THF [30, 31]. [Pg.179]

As will be seen, the rate at which the potential is changed (i.e., the sweep rate) becomes veiy important. For complex reactions, it may have to be so slow (0.01 mV s 1) that cyclic voltammetry approaches a potentiostatic (rather than a potentiody-namic) technique. On the other hand, too large a sweep rate may yield parameters that are not those of the steady state and hence are difficult to fit into a mechanism of consecutive reactions in which the attainment of a steady state (d6/dt = 0) at each potential is a basic assumption. Thus, determining the mechanisms of reactions that are to function in steady-state devices such as fuel cells or reactors is more likely to... [Pg.709]

For their characterization, electrochromic compounds are initially tested at a single working electrode under potentiostatic control using a three-electrode arrangement. Traditional characterization techniques such as cyclic voltammetry, coulometry, chronoamperometry, all with in situ spectroscopic measurements, are applied to monitor important properties [27]. From these results, promising candidates are selected and then incorporated into the respective device. [Pg.17]

C. Amatore and C. Lefrou, New Concept for a Potentiostat for On-Line Ohmic Drop Compensation in Cyclic Voltammetry Above 300 kV s 1, J. Electroanal. Chem. 324 33-58 (1992). [Pg.234]

Minimization of time scale measurements Ultrafast undistorted cyclic voltammetry may be performed at ultramicroelectrodes using an ultrafast potentiostat allowing on-line ohmic drop compensation. [Pg.165]

Potentiostat/galvanostat (Hokuto Denko, HZ-3000) for cyclic voltammetry. [Pg.1057]

Apparatus Cyclic voltammetry and amperometric current-time curves were obtained with a Pine Instrument Inc., Model RDE4 bipotentiostat and Kipp Zonen BD 91 XYY recorder equipped with a time base module. All measurements were performed in a conventional single-compartment cell with a saturated calomel electrode as the reference electrode and a Pt mesh as the auxiliary electrode at room temperature. Chronoamperometry was made with EG G Princeton Applied Research potentiostat/galvanostat Model 273 equipped with Model 270 Electrochemical Analysis Software. [Pg.39]

Apparatus and materials. All electrochemical polymerizations, amperometric measurements and cyclic voltammetry were carried out with an EG G Princeton Applied Research Potentiostat model 273. Pyrrole was purified by vacuum distillation and by passage over neutral alumina prior to electropolymerization. The polyanions (1) used as dopants are shown in Figure 1, and were purified twice by precipitation from methanol in 0.1 M HC1. Detailed information about their synthesis and catalytic... [Pg.170]

This method is one of the most used to characterize active masses. It quickly provides useful information about potential range of activity, capacity, cyclability, and kinetics. The result is a current versus potential (or versus time). Sweep voltammetry is easily conducted with commercially available potentiostat-galvanostat. Common sweep rates are in the range of 0.001-100 mV/s and common current densities from 0.01 to 10mA/cm2. Cyclic voltammetry is usually applied for estimating the reversibility of the electrochemical reaction. [Pg.12]

Potential or current step transients seem to be more appropriate for kinetic studies since the initial and boundary conditions of the experiment are better defined unlike linear scan or cyclic voltammetry where time and potential are convoluted. The time resolution of the EQCM is limited in this case by the measurement of the resonant frequency. There are different methods to measure the crystal resonance frequency. In the simplest approach, the Miller oscillator or similar circuit tuned to one of the crystal resonance frequencies may be used and the frequency can be measured directly with a frequency meter [18]. This simple experimental device can be easily built, but has a poor resolution which is inversely proportional to the measurement time for instance for an accuracy of 1 Hz, a gate time of 1 second is needed, and for 0.1 Hz the measurement lasts as long as 10 seconds minimum to achieve the same accuracy. An advantage of the Miller oscillator is that the crystal electrode is grounded and can be used as the working electrode with a hard ground potentiostat with no conflict between the high ac circuit and the dc electrochemical circuit. [Pg.464]


See other pages where Potentiostat cyclic voltammetry is mentioned: [Pg.193]    [Pg.261]    [Pg.121]    [Pg.193]    [Pg.193]    [Pg.261]    [Pg.121]    [Pg.193]    [Pg.473]    [Pg.28]    [Pg.129]    [Pg.131]    [Pg.432]    [Pg.26]    [Pg.106]    [Pg.312]    [Pg.105]    [Pg.518]    [Pg.252]    [Pg.415]    [Pg.202]    [Pg.145]    [Pg.178]    [Pg.184]    [Pg.383]    [Pg.626]    [Pg.53]    [Pg.338]    [Pg.1271]    [Pg.320]    [Pg.171]    [Pg.196]    [Pg.29]    [Pg.142]   
See also in sourсe #XX -- [ Pg.741 , Pg.742 ]




SEARCH



Cyclic voltammetry

Potentiostat

Potentiostatic

Potentiostats

© 2024 chempedia.info