Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potentials, electric cardiac

The transmembrane potential of cardiac cells is determined by the concentrations of several ions—chiefly sodium (Na+), potassium (K+), calcium (Ca2+), and chloride (Cl-)—on either side of the membrane and the permeability of the membrane to each ion. These water-soluble ions are unable to freely diffuse across the lipid cell membrane in response to their electrical and concentration gradients they require aqueous channels (specific pore-forming proteins) for such diffusion. Thus, ions move across cell membranes in response to their gradients only at specific times during the cardiac cycle when these ion channels are open. The movements of the ions produce currents that form the basis of the cardiac action potential. Individual channels are relatively ion-specific, and the flux of ions through them is... [Pg.272]

Electrical activity in the heart can be picked up by electrodes placed on the skin and recorded as the familiar electrocardiogram (ECG). The ECG is a record of the sum of all action potentials in the heart as it contracts. Action potentials are generated by depolarization followed by repolarization of the cardiac muscle cell membrane. Depolarization is initiated by an influx of sodium ions into the cardiac muscle cells, followed by an influx of calcium ions. Repolarization is brought about by efflux of potassium ions. The phases of a cardiac action potential are shown in Eigure 4.3 where the depolarization is the change in resting membrane potential of cardiac muscle cells from —90 mV to 4-20 mV. This is due to influx of sodium ions followed by influx of calcium ions. Contraction of the myocardium follows depolarization. The refractory period is the time interval when a second contraction cannot occur and repolarization is the recovery of the resting potential due to efflux of potassium ions. After this the cycle repeats itself. [Pg.53]

The most important potential complication of phenol-based peels is cardiotoxicity. Phenol is directly toxic to myocardium. Studies in rats have shown a decrease in myocardial contraction and in electrical activity following systemic exposure to phenol [i6]. Since fatal doses ranged widely in these studies, it seems that individual sensitivity of myocardium to this chemical exists. In humans neither sex/age nor previous cardiac history/blood phenol levels are accurate predictors for cardiac arrhythmia susceptibility [17]. [Pg.85]

In contrast to the pre-existing models that merely portrayed membrane potentials, the new generation of models calculated the ion fluxes that give rise to the changes in cell electrical potential. Thus, the new models provided the core foundation for a mechanistic description of cell function. Their concept was applied to cardiac cells by Denis Noble in 1960. [Pg.136]

Skeletal muscle is neurogenic and requires stimulation from the somatic nervous system to initiate contraction. Because no electrical communication takes place between these cells, each muscle fiber is innervated by a branch of an alpha motor neuron. Cardiac muscle, however, is myogenic, or self-excitatory this muscle spontaneously depolarizes to threshold and generates action potentials without external stimulation. The region of the heart with the fastest rate of inherent depolarization initiates the heart beat and determines the heart rhythm. In normal hearts, this "pacemaker region is the sinoatrial node. [Pg.169]

Inhalation of certain hydrocarbons, including some anesthetics, can make the mammalian heart abnormally sensitive to epinephrine, resulting in ventricular arrhythmias, which in some cases can lead to sudden death (Reinhardt et al. 1971). The mechanism of action of cardiac sensitization is not completely understood but appears to involve a disturbance in the normal conduction of the electrical impulse through the heart, probably by producing a local disturbance in the electrical potential across cell membranes. The hydrocarbons themselves do not produce arrhythmia the arrhythmia is the result of the potentiation of endogenous epinephrine (adrenalin) by the hydrocarbon. [Pg.160]

Figure 4.2 Cartoon representation of an ECC trace and ventricular cardiac action potential, (a) A representation of an ECC trace with its five typical deflections (PQRST) arising from the spread of electrical activitythrough the heart. The QRS wave denotes the ventricular depolarization, while the T wave represents ventricular repolarization. The QT interval therefore estimates the duration of a ventricular action potential, (b) Schematic of the five phases of a ventricular action potential. Phase 0 is the rapid depolarization phase due to a large influx of Na+ ions (Ina). Phase 1 occurs with the inactivation of Na+ channels and the onset of transient outward (repolarizing) currents (/to)... Figure 4.2 Cartoon representation of an ECC trace and ventricular cardiac action potential, (a) A representation of an ECC trace with its five typical deflections (PQRST) arising from the spread of electrical activitythrough the heart. The QRS wave denotes the ventricular depolarization, while the T wave represents ventricular repolarization. The QT interval therefore estimates the duration of a ventricular action potential, (b) Schematic of the five phases of a ventricular action potential. Phase 0 is the rapid depolarization phase due to a large influx of Na+ ions (Ina). Phase 1 occurs with the inactivation of Na+ channels and the onset of transient outward (repolarizing) currents (/to)...
Until the 1950s, the rare periodic phenomena known in chemistry, such as the reaction of Bray [1], represented laboratory curiosities. Some oscillatory reactions were also known in electrochemistry. The link was made between the cardiac rhythm and electrical oscillators [2]. New examples of oscillatory chemical reactions were later discovered [3, 4]. From a theoretical point of view, the first kinetic model for oscillatory reactions was analyzed by Lotka [5], while similar equations were proposed soon after by Volterra [6] to account for oscillations in predator-prey systems in ecology. The next important advance on biological oscillations came from the experimental and theoretical studies of Hodgkin and Huxley [7], which clarified the physicochemical bases of the action potential in electrically excitable cells. The theory that they developed was later applied [8] to account for sustained oscillations of the membrane potential in these cells. Remarkably, the classic study by Hodgkin and Huxley appeared in the same year as Turing s pioneering analysis of spatial patterns in chemical systems [9]. [Pg.254]

Cardiac glycosides (CG) bind to the extracellular side of Na+/lC-ATPases of cardiomyocytes and inhibit enzyme activity. The Na+/lC-ATPases operate to pump out Na+ leaked into the cell and to retrieve 1C leaked from the cell. In this manner, they maintain the transmembrane gradients for 1C and Na+, the negative resting membrane potential, and the normal electrical excitability of the cell membrane. When part of the enzyme is occupied and inhibited by CG, the unoccupied remainder can increase its level of activity and maintain Na and 1C transport The effective stimulus is a small elevation of intracellular Na concentration (normally approx. 7 mM). [Pg.130]

The electrical impulse for contraction (propagated action potential p. 136) originates in pacemaker cells of the sinoatrial node and spreads through the atria, atrioventricular (AV) node, and adjoining parts of the His-Purkinje fiber system to the ventricles (A). Irregularities of heart rhythm can interfere dangerously with cardiac pumping func-tioa... [Pg.134]

The apparent liability of bepridil and mibefradil seems to result from their additional blocking effect on another important ion channel, KvLQTl/minK [23], which is responsible for phase 3 of the action potential (Figure 16.1). Indeed, the IKs blockers prolong the cardiac APD and QT interval and suppress electrically induced... [Pg.390]

Another important, in fact more convincing indication for the use of digoxin is atrial fibrillation, in particular when occurring after cardiac surgery. The beneficial effect of digoxin is caused by impairment of the AV conduction, leading to the dissociation of the electrical activities of the atria and the ventricles. The inotropic effect, although weak, is potentially useful. [Pg.339]

In the undamaged myocardium, cardiac impulses travel rapidly antegrade through the Purkinje hbers to deliver the excitatory electrical impulse to the ventricular myocardium. During the normal activation sequence, retrograde conduction from ventricular myocardium to the conducting hbers is prevented by the longer duration of the membrane action potential and thus the refractory period in the Purkinje hbers. [Pg.168]

Schematic representation of the heart and normal cardiac electrical activity (intracellular recordings from areas indicated and ECG). Sinoatrial (SA) node, atrioventricular (AV) node, and Purkinje cells display pacemaker activity (phase 4 depolarization). The ECG is the body surface manifestation of the depolarization and repolarization waves of the heart. The P wave is generated by atrial depolarization, the QRS by ventricular muscle depolarization, and the T wave by ventricular repolarization. Thus, the PR interval is a measure of conduction time from atrium to ventricle, and the QRS duration indicates the time required for all of the ventricular cells to be activated (ie, the intraventricular conduction time). The QT interval reflects the duration of the ventricular action potential. Schematic representation of the heart and normal cardiac electrical activity (intracellular recordings from areas indicated and ECG). Sinoatrial (SA) node, atrioventricular (AV) node, and Purkinje cells display pacemaker activity (phase 4 depolarization). The ECG is the body surface manifestation of the depolarization and repolarization waves of the heart. The P wave is generated by atrial depolarization, the QRS by ventricular muscle depolarization, and the T wave by ventricular repolarization. Thus, the PR interval is a measure of conduction time from atrium to ventricle, and the QRS duration indicates the time required for all of the ventricular cells to be activated (ie, the intraventricular conduction time). The QT interval reflects the duration of the ventricular action potential.
The effects of digitalis on the electrical properties of the heart are a mixture of direct and autonomic actions. Direct actions on the membranes of cardiac cells follow a well-defined progression an early, brief prolongation of the action potential, followed by shortening (especially the plateau phase). The decrease in action potential duration is probably the result of increased potassium conductance that is caused by increased intracellular calcium (see Chapter 14). All these effects can be observed at therapeutic concentrations in the absence of overt toxicity (Table 13-2). [Pg.308]


See other pages where Potentials, electric cardiac is mentioned: [Pg.312]    [Pg.247]    [Pg.967]    [Pg.85]    [Pg.2]    [Pg.13]    [Pg.325]    [Pg.139]    [Pg.63]    [Pg.697]    [Pg.107]    [Pg.190]    [Pg.385]    [Pg.303]    [Pg.743]    [Pg.89]    [Pg.89]    [Pg.93]    [Pg.33]    [Pg.402]    [Pg.274]    [Pg.70]    [Pg.613]    [Pg.599]    [Pg.232]    [Pg.422]    [Pg.425]    [Pg.433]    [Pg.434]    [Pg.274]    [Pg.2]    [Pg.3]   
See also in sourсe #XX -- [ Pg.127 ]




SEARCH



Electrical potential

© 2024 chempedia.info