Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potential energy surfaces dynamics

E. J. Heller, in Potential Energy Surfaces Dynamics Calculations, D. G. Truhlar, ed., Plenum, New York, 1981. [Pg.323]

CN] —> I + CN. Wavepacket moves and spreads in time, with its centre evolving about 5 A in 200 fs. Wavepacket dynamics refers to motion on the intennediate potential energy surface B. Reprinted from Williams S O and lime D G 1988 J. Phys. Chem.. 92 6648. (c) Calculated FTS signal (total fluorescence from state C) as a fiinction of the time delay between the first excitation pulse (A B) and the second excitation pulse (B -> C). Reprinted from Williams S O and Imre D G, as above. [Pg.243]

Rosker M J, Rose T S and Zewail A 1988 Femtosecond real-time dynamics of photofragment-trapping resonances on dissociative potential-energy surfaces Ghem. Phys. Lett. 146 175-9... [Pg.794]

The above discussion represents a necessarily brief simnnary of the aspects of chemical reaction dynamics. The theoretical focus of tliis field is concerned with the development of accurate potential energy surfaces and the calculation of scattering dynamics on these surfaces. Experimentally, much effort has been devoted to developing complementary asymptotic techniques for product characterization and frequency- and time-resolved teclmiques to study transition-state spectroscopy and dynamics. It is instructive to see what can be accomplished with all of these capabilities. Of all the benclunark reactions mentioned in section A3.7.2. the reaction F + H2 —> HE + H represents the best example of how theory and experiment can converge to yield a fairly complete picture of the dynamics of a chemical reaction. Thus, the remainder of this chapter focuses on this reaction as a case study in reaction dynamics. [Pg.875]

Truhlar D G (ed) 1981 Potential Energy Surfaces and Dynamics Calculations (New York Plenum)... [Pg.1003]

Schinke R and Huber J R 1993 Photodissociation dynamics of polyatomic molecules. The relationship between potential energy surfaces and the breaking of molecular bonds J. Rhys. Chem. 97 3463... [Pg.1090]

Quack M and Suhm M A 1991 Potential energy surfaces, quasiadiabatic channels, rovibrational spectra, and intramolecular dynamics of (HF)2 and its isotopomers from quantum Monte Carlo calculations J. Chem. Phys. 95 28-59... [Pg.2151]

Hammes-Schiffer S and Tully J C 1995 Nonadiabatic transition state theory and multiple potential energy surfaces molecular dynamics of infrequent events J. Chem. Phys. 103 8528... [Pg.2330]

Tunable visible and ultraviolet lasers were available well before tunable infrared and far-infrared lasers. There are many complexes that contain monomers with visible and near-UV spectra. The earliest experiments to give detailed dynamical infonnation on complexes were in fact those of Smalley et al [22], who observed laser-induced fluorescence (LIF) spectra of He-l2 complexes. They excited the complex in the I2 B <—A band, and were able to produce excited-state complexes containing 5-state I2 in a wide range of vibrational states. From line w idths and dispersed fluorescence spectra, they were able to study the rates and pathways of dissociation. Such work was subsequently extended to many other systems, including the rare gas-Cl2 systems, and has given quite detailed infonnation on potential energy surfaces [231. [Pg.2447]

Chemical reaction dynamics is an attempt to understand chemical reactions at tire level of individual quantum states. Much work has been done on isolated molecules in molecular beams, but it is unlikely tliat tliis infonnation can be used to understand condensed phase chemistry at tire same level [8]. In a batli, tire reacting solute s potential energy surface is altered by botli dynamic and static effects. The static effect is characterized by a potential of mean force. The dynamical effects are characterized by tire force-correlation fimction or tire frequency-dependent friction [8]. [Pg.3043]

The stoi7 begins with studies of the molecular Jahn-Teller effect in the late 1950s [1-3]. The Jahn-Teller theorems themselves [4,5] are 20 years older and static Jahn-Teller distortions of elecbonically degenerate species were well known and understood. Geomebic phase is, however, a dynamic phenomenon, associated with nuclear motions in the vicinity of a so-called conical intersection between potential energy surfaces. [Pg.2]

The full dynamical treatment of electrons and nuclei together in a laboratory system of coordinates is computationally intensive and difficult. However, the availability of multiprocessor computers and detailed attention to the development of efficient software, such as ENDyne, which can be maintained and debugged continually when new features are added, make END a viable alternative among methods for the study of molecular processes. Eurthemiore, when the application of END is compared to the total effort of accurate determination of relevant potential energy surfaces and nonadiabatic coupling terms, faithful analytical fitting and interpolation of the common pointwise representation of surfaces and coupling terms, and the solution of the coupled dynamical equations in a suitable internal coordinates, the computational effort of END is competitive. [Pg.233]

In this chapter, we look at the techniques known as direct, or on-the-fly, molecular dynamics and their application to non-adiabatic processes in photochemistry. In contrast to standard techniques that require a predefined potential energy surface (PES) over which the nuclei move, the PES is provided here by explicit evaluation of the electronic wave function for the states of interest. This makes the method very general and powerful, particularly for the study of polyatomic systems where the calculation of a multidimensional potential function is an impossible task. For a recent review of standard non-adiabatic dynamics methods using analytical PES functions see [1]. [Pg.251]

Both the BO dynamics and Gaussian wavepacket methods described above in Section n separate the nuclear and electronic motion at the outset, and use the concept of potential energy surfaces. In what is generally known as the Ehrenfest dynamics method, the picture is still of semiclassical nuclei and quantum mechanical electrons, but in a fundamentally different approach the electronic wave function is propagated at the same time as the pseudoparticles. These are driven by standard classical equations of motion, with the force provided by an instantaneous potential energy function... [Pg.290]

The multiple spawning method described in Section IV.C has been applied to a number of photochemical systems using analytic potential energy surfaces. As well as small scattering systems [36,218], the large retinal molecule has been treated [243,244]. It has also been applied as a direct dynamics method. [Pg.306]

B. H. Lengsfield and D. R. Yarkony, Nonadiabatic Interactions Between Potential Energy Surfaces Theory and Applications, in State-Selected and State to State Ion-Molecule Reaction Dynamics Part 2 Theory, M. Baer and C.-Y. Ng, eds., John Wiley Sons, Inc., New York, 1992, Vol, 82, pp. 1-71. [Pg.474]

The full quantum mechanical study of nuclear dynamics in molecules has received considerable attention in recent years. An important example of such developments is the work carried out on the prototypical systems H3 [1-5] and its isotopic variant HD2 [5-8], Li3 [9-12], Na3 [13,14], and HO2 [15-18], In particular, for the alkali metal trimers, the possibility of a conical intersection between the two lowest doublet potential energy surfaces introduces a complication that makes their theoretical study fairly challenging. Thus, alkali metal trimers have recently emerged as ideal systems to study molecular vibronic dynamics, especially the so-called geometric phase (GP) effect [13,19,20] (often referred to as the molecular Aharonov-Bohm effect [19] or Berry s phase effect [21]) for further discussion on this topic see [22-25], and references cited therein. The same features also turn out to be present in the case of HO2, and their exact treatment assumes even further complexity [18],... [Pg.552]

In Chapter VI, Ohm and Deumens present their electron nuclear dynamics (END) time-dependent, nonadiabatic, theoretical, and computational approach to the study of molecular processes. This approach stresses the analysis of such processes in terms of dynamical, time-evolving states rather than stationary molecular states. Thus, rovibrational and scattering states are reduced to less prominent roles as is the case in most modem wavepacket treatments of molecular reaction dynamics. Unlike most theoretical methods, END also relegates electronic stationary states, potential energy surfaces, adiabatic and diabatic descriptions, and nonadiabatic coupling terms to the background in favor of a dynamic, time-evolving description of all electrons. [Pg.770]


See other pages where Potential energy surfaces dynamics is mentioned: [Pg.108]    [Pg.60]    [Pg.16]    [Pg.108]    [Pg.60]    [Pg.16]    [Pg.245]    [Pg.246]    [Pg.250]    [Pg.261]    [Pg.269]    [Pg.869]    [Pg.870]    [Pg.871]    [Pg.871]    [Pg.1255]    [Pg.2059]    [Pg.2439]    [Pg.3013]    [Pg.31]    [Pg.43]    [Pg.220]    [Pg.221]    [Pg.221]    [Pg.223]    [Pg.234]    [Pg.385]    [Pg.560]    [Pg.568]    [Pg.595]    [Pg.770]    [Pg.771]   
See also in sourсe #XX -- [ Pg.415 , Pg.416 , Pg.417 , Pg.418 , Pg.419 , Pg.420 , Pg.421 , Pg.422 , Pg.423 , Pg.424 , Pg.425 , Pg.426 ]




SEARCH



Dynamics Potential

Dynamics on a Potential Energy Surface

Molecular dynamics and potential energy surfaces

Molecular dynamics potential energy surfaces interpolation

Nuclear dynamics potential energy surfaces

Potential energy surface RRKM dynamics

Potential energy surface chemical reaction dynamics

Potential energy surface intermolecular dynamics

Potential energy surface solvent dynamic effect

Potential energy surfaces intramolecular dynamics

Potential energy surfaces local dynamics

Potential energy surfaces molecular dynamics principles

Potential energy surfaces nonadiabatic dynamics

Potential energy surfaces nonadiabatic quantum dynamics

Potential energy surfaces reaction dynamics

Potential energy surfaces, solvation dynamics

Quantum dynamics potential energy surfaces

Reaction paths, potential energy surfaces dynamics

Relaxation dynamics potential energy surfaces

© 2024 chempedia.info