Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potential energy surfaces nonadiabatic dynamics

Hammes-Schiffer S and Tully J C 1995 Nonadiabatic transition state theory and multiple potential energy surfaces molecular dynamics of infrequent events J. Chem. Phys. 103 8528... [Pg.2330]

FIGURE 4.7 Molecule surface scattering often involves dynamical coupling between the two lower adiabatic potential energy surfaces. Nonadiabatic coupling between the two surfaces is large near the barrier for dissociation. Energy units eps = 100 kJ/mol. [Pg.65]

The full dynamical treatment of electrons and nuclei together in a laboratory system of coordinates is computationally intensive and difficult. However, the availability of multiprocessor computers and detailed attention to the development of efficient software, such as ENDyne, which can be maintained and debugged continually when new features are added, make END a viable alternative among methods for the study of molecular processes. Eurthemiore, when the application of END is compared to the total effort of accurate determination of relevant potential energy surfaces and nonadiabatic coupling terms, faithful analytical fitting and interpolation of the common pointwise representation of surfaces and coupling terms, and the solution of the coupled dynamical equations in a suitable internal coordinates, the computational effort of END is competitive. [Pg.233]

B. H. Lengsfield and D. R. Yarkony, Nonadiabatic Interactions Between Potential Energy Surfaces Theory and Applications, in State-Selected and State to State Ion-Molecule Reaction Dynamics Part 2 Theory, M. Baer and C.-Y. Ng, eds., John Wiley Sons, Inc., New York, 1992, Vol, 82, pp. 1-71. [Pg.474]

In Chapter VI, Ohm and Deumens present their electron nuclear dynamics (END) time-dependent, nonadiabatic, theoretical, and computational approach to the study of molecular processes. This approach stresses the analysis of such processes in terms of dynamical, time-evolving states rather than stationary molecular states. Thus, rovibrational and scattering states are reduced to less prominent roles as is the case in most modem wavepacket treatments of molecular reaction dynamics. Unlike most theoretical methods, END also relegates electronic stationary states, potential energy surfaces, adiabatic and diabatic descriptions, and nonadiabatic coupling terms to the background in favor of a dynamic, time-evolving description of all electrons. [Pg.770]

There are many facets to a successful quantum dynamics study. Of course, if comparison with experimental results is a goal, the underlying Bom-Oppenheimer potential energy surface must be known at an appropriately high level of electronic structure theory. For nonadiabatic problems, two or more surfaces and their couplings must be determined. The present chapter, however, focuses on the quantum dynamics of the nuclei once an adequate description of the electronic structure has been achieved. [Pg.2]

Nonadiabatic transitions due to potential energy surface crossings definitely play cmcial roles in chemical dynamics. They (1) are important to comprehend the... [Pg.194]

Lengsfield BH, Yarkony DR (1992) Nonadiabatic interactions between potential energy surfaces theory and applications. In Baer M, Ng CY (eds) State-selected and state-to-state ion-molecule reaction dynamics part 2 theory, Vol. 82 of Advances in Chemical Physics, John Wiley and Sons, New York, p 1-71. [Pg.328]

Fig. 3. Vibrational population distributions of N2 formed in associative desorption of N-atoms from ruthenium, (a) Predictions of a classical trajectory based theory adhering to the Born-Oppenheimer approximation, (b) Predictions of a molecular dynamics with electron friction theory taking into account interactions of the reacting molecule with the electron bath, (c) Born—Oppenheimer potential energy surface, (d) Experimentally-observed distribution. The qualitative failure of the electronically adiabatic approach provides some of the best available evidence that chemical reactions at metal surfaces are subject to strong electronically nonadiabatic influences. (See Refs. 44 and 45.)... Fig. 3. Vibrational population distributions of N2 formed in associative desorption of N-atoms from ruthenium, (a) Predictions of a classical trajectory based theory adhering to the Born-Oppenheimer approximation, (b) Predictions of a molecular dynamics with electron friction theory taking into account interactions of the reacting molecule with the electron bath, (c) Born—Oppenheimer potential energy surface, (d) Experimentally-observed distribution. The qualitative failure of the electronically adiabatic approach provides some of the best available evidence that chemical reactions at metal surfaces are subject to strong electronically nonadiabatic influences. (See Refs. 44 and 45.)...
Nonadiabatic ab initio molecular dynamics methods are one of the few promising strategies to explore excited-state potential-energy surfaces of multidimensional system in an unbiased manner. [Pg.249]

As a last example of a molecular system exhibiting nonadiabatic dynamics caused by a conical intersection, we consider a model that recently has been proposed by Seidner and Domcke to describe ultrafast cis-trans isomerization processes in unsaturated hydrocarbons [172]. Photochemical reactions of this type are known to involve large-amplitode motion on coupled potential-energy surfaces [169], thus representing another stringent test for a mixed quantum-classical description that is complementary to Models 1 and II. A number of theoretical investigations, including quantum wave-packet studies [163, 164, 172], time-resolved pump-probe spectra [164, 181], and various mixed... [Pg.259]

Finally, we consider the performance of the MFT method for nonadiabatic dynamics induced by avoided crossings of the respective potential energy surfaces. We start with the discussion of the one-mode model. Model IVa, describing ultrafast intramolecular electron transfer. The comparison of the MFT method (dashed line) with the quantum-mechanical results (full line) shown in Fig. 5 demonstrates that the MFT method gives a rather good description of the short-time dynamics (up to 50 fs) for this model. For longer times, however, the dynamics is reproduced only qualitatively. Also shown is the time evolution of the diabatic electronic coherence which, too, is... [Pg.271]


See other pages where Potential energy surfaces nonadiabatic dynamics is mentioned: [Pg.365]    [Pg.687]    [Pg.221]    [Pg.223]    [Pg.372]    [Pg.97]    [Pg.103]    [Pg.106]    [Pg.106]    [Pg.195]    [Pg.287]    [Pg.288]    [Pg.390]    [Pg.514]    [Pg.535]    [Pg.226]    [Pg.444]    [Pg.451]    [Pg.459]    [Pg.480]    [Pg.79]    [Pg.84]    [Pg.99]    [Pg.325]    [Pg.327]    [Pg.259]    [Pg.271]    [Pg.299]   
See also in sourсe #XX -- [ Pg.460 , Pg.461 ]




SEARCH



Dynamics Potential

Nonadiabatic dynamics

Potential energy surfaces dynamics

Potential energy surfaces nonadiabatic quantum dynamics

© 2024 chempedia.info