Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Porous phase separation

Gas chromatography, depending on the stationary phase, can be either gas—Hquid chromatography (glc) or gas—soHd chromatography (gsc). The former is the most commonly used. Separation in a gas—Hquid chromatograph arises from differential partitioning of the sample s components between the stationary Hquid phase adsorbed on a porous soHd, and the gas phase. Separation in a gas—soHd chromatograph is the result of preferential adsorption on the soHd or exclusion of materials by size. [Pg.106]

Truly porous, synthetic ion exchangers are also available. These materials retain their porosity even after removal of the solvent and have measurable surface areas and pore size. The term macroreticular is commonly used for resins prepared from a phase separation technique, where the polymer matrix is prepared with the addition of a hq-uid that is a good solvent for the monomers, but in which the polymer is insoluble. Matrices prepared in this way usually have the appearance of a conglomerate of gel-type microspheres held together to... [Pg.1500]

The third line of development was to increase the selectivity in order to achieve the highest possible resolution to address difficult separations. This may be achieved by a very narrow pore size distribution of the media, e.g., such as achieved by porous silica microspheres (PSM) or by modifying the porous phase by a composite material, e.g., as for Superdex. In practice, this material shows a maximum selectivity over the separation range (e.g., see Fig. 2.2). [Pg.28]

The ion pair extraction by flow injection analysis (FIA) has been used to analyze sodium dodecyl sulfate and sodium dodecyl ether (3 EO) sulfate among other anionic surfactants. The solvating agent was methanol and the phase-separating system was designed with a PTFE porous membrane permeable to chloroform but impermeable to the aqueous solution. The method is applicable to concentrations up to 1.25 mM with a detection limit of 15 pM [304]. [Pg.285]

Porous membranes have been prepared by leaching an additive from films and tubes of PCL (64,72). The procedure involves extrusion or casting blends of PCL and Pluronic F68, the latter being an FDA-approved oxyethylene-co-oxypropylene triblock copolymer. Treatment of the phase-separated blend with aqueous acetone or aqueous alcohols causes both swelling of the polymer and extraction of the Pluronic F68. The induced pore size and void volume may be controlled by the time, temperature, and solvent composition. [Pg.88]

Hollow and porous polymer capsules of micrometer size have been fabricated by using emulsion polymerization or through interfacial polymerization strategies [79,83-84, 88-90], Micron-size, hollow cross-linked polymer capsules were prepared by suspension polymerization of emulsion droplets with polystyrene dissolved in an aqueous solution of poly(vinyl alcohol) [88], while latex capsules with a multihollow structure were processed by seeded emulsion polymerization [89], Ceramic hollow capsules have also been prepared by emulsion/phase-separation procedures [14,91-96] For example, hollow silica capsules with diameters of 1-100 micrometers were obtained by interfacial reactions conducted in oil/water emulsions [91],... [Pg.515]

The two techniques differ in that HDC employs a nonporous stationary phase. Separation is affected as a result of particles of different size sampling different velocities in the interstitial spaces. Size exclusion chromatography is accomplished by superimposing a steric selection mechanism which results from the use of a porous bed. The pore sizes may vary over a wide range and the separation occurs as a result of essentially the same processes present in the gel permeation chromatography of macromolecules. [Pg.27]

Nakanishi, K. (1997). Pore structure control of silica gels based on phase separation. J. Porous Mater. 4, 67-112. [Pg.174]

The next three chapters (Chapters 9-11) focus on the deposition of nano-structured or microstructured films and entities. Porous oxide thin films are, for example, of great interest due to potential application of these films as low-K dielectrics and in sensors, selective membranes, and photovoltaic applications. One of the key challenges in this area is the problem of controlling, ordering, and combining pore structure over different length scales. Chapter 9 provides an introduction and discussion of evaporation-induced self-assembly (EISA), a method that combines sol-gel synthesis with self-assembly and phase separation to produce films with a tailored pore structure. Chapter 10 describes how nanomaterials can be used as soluble precursors for the preparation of extended... [Pg.511]

The HGMs produced were heat treated at 620 °C for 18 hours before they were leached in 4 molar HC1 solutions at 80 "C for 4 hours. Heat treatment produced phase separation which resulted in a silica-rich phase and a more soluble and interconnected, sodium borate phase. Leaching removed the soluble sodium borate phase of the glass and created porosity through the microsphere walls. The porous wall, hollow glass microspheres, sank to the bottom of the solution. These sinkers were collected, water washed and dried at 100 °C overnight. [Pg.144]

Under certain time and temperature conditions, the homogeneous glass separates into two phases. One of the phases consists substantially of silicon dioxide which is insoluble in mineral acid. The other phase represents a soluble coherent boric acid phase rich in alkali borate. If the boric acid phase is dissolved out of this heterogeneous glass structure with a mineral acid, a porous skeleton of substantially insoluble silicon dioxide is left. The phase separation region occurs between 500°C and 800 C. [Pg.40]

Organic polymers and resins have also been used for zeolite binding. An early example is the use polyurethane in the formahon of vibration-resistant zeolite porous bodies for refrigerant drying [90]. Organic binders such as cellulose acetate and other cellulose-based polymers have also used to mitigate problems with binder dissolution in aqueous phase separations [91, 92]. Latex has also been used as a water-stable organic binder [93]. More recently, thermoplastic resins, such as polyethylene have also been used as binders for zeolites [94]. [Pg.70]

In discussing gas phase separations, a few definitions will help in understanding the subject matter. Adsorbents, sometimes referred to here as sorbents, are solid chemical substances that possess micro-porous surfaces that can admit molecules to the interior surface of the structure. Zeolites in particular are solid, micro-porous, alumino-silicates with adsorption and or ion exchange capability. They affect separations by adsorbing molecules into their micro-structures. [Pg.274]


See other pages where Porous phase separation is mentioned: [Pg.282]    [Pg.547]    [Pg.289]    [Pg.149]    [Pg.478]    [Pg.248]    [Pg.1471]    [Pg.144]    [Pg.295]    [Pg.56]    [Pg.275]    [Pg.118]    [Pg.242]    [Pg.70]    [Pg.435]    [Pg.585]    [Pg.12]    [Pg.220]    [Pg.57]    [Pg.99]    [Pg.17]    [Pg.318]    [Pg.9]    [Pg.66]    [Pg.238]    [Pg.173]    [Pg.156]    [Pg.34]    [Pg.95]    [Pg.15]    [Pg.439]    [Pg.143]    [Pg.148]    [Pg.394]    [Pg.41]    [Pg.454]    [Pg.157]    [Pg.4]   
See also in sourсe #XX -- [ Pg.184 , Pg.185 ]




SEARCH



Porous separators

© 2024 chempedia.info