Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Population balance moment transformation

General solution of the population balance is complex and normally requires numerical methods. Using the moment transformation of the population balance, however, it is possible to reduce the dimensionality of the population balance to that of the transport equations. It should also be noted, however, that although the mathematical effort to solve the population balance may therefore decrease considerably by use of a moment transformation, it always leads to a loss of information about the distribution of the variables with the particle size or any other internal co-ordinate. Full crystal size distribution (CSD) information can be recovered by numerical inversion of the leading moments (Pope, 1979 Randolph and Larson, 1988), but often just mean values suffice. [Pg.54]

The population balance in equation 2.86 employs the local instantaneous values of the velocity and concentration. In turbulent flow, there are fluctuations of the particle velocity as well as fluctuations of species and concentrations (Pope, 1979, 1985, 2000). Baldyga and Orciuch (1997, 2001) provide the appropriate generalization of the moment transformation equation 2.93 for the case of homogeneous and non-homogeneous turbulent particle flow by Reynolds averaging... [Pg.56]

Tavare and Garside ( ) developed a method to employ the time evolution of the CSD in a seeded isothermal batch crystallizer to estimate both growth and nucleation kinetics. In this method, a distinction is made between the seed (S) crystals and those which have nucleated (N crystals). The moment transformation of the population balance model is used to represent the N crystals. A supersaturation balance is written in terms of both the N and S crystals. Experimental size distribution data is used along with a parameter estimation technique to obtain the kinetic constants. The parameter estimation involves a Laplace transform of the experimentally determined size distribution data followed a linear least square analysis. Depending on the form of the nucleation equation employed four, six or eight parameters will be estimated. A nonlinear method of parameter estimation employing desupersaturation curve data has been developed by Witkowki et al (S5). [Pg.10]

The process inputs are defined as the heat input, the product flow rate and the fines flow rate. The steady state operating point is Pj =120 kW, Q =.215 1/s and Q =.8 1/s. The process outputs are defined as the thlrd moment m (t), the (mass based) mean crystal size L Q(tK relative volume of crystals vr (t) in the size range (r.-lO m. In determining the responses of the nonlinear model the method of lines is chosen to transform the partial differential equation in a set of (nonlinear) ordinary differential equations. The time responses are then obtained by using a standard numerical integration technique for sets of coupled ordinary differential equations. It was found that discretization of the population balance with 1001 grid points in the size range 0. to 5 10 m results in very accurate solutions of the crystallizer model. [Pg.152]

The population balance approach to measurement of nucleation and growth rates was presented by Randolph and Larson (1971, 1988). This methodology creates a transform called population density [n(L)], where L is the characteristic size of each particle, by differentiating the cumulative size distribution N versus L. shown in Fig. 4-22, where N is the cumulative number of crystals smaller than L. Per unit volume, the total number of particles, total surface area, and total volume/mass are calculated as the first, second, and third moments of this distribution. [Pg.96]

Alopaeus, V., Laakkonen, M. Aittamaa, J. 2006 Numerical solution of moment-transformed population balance equation with fixed quadrature points. Chemical Engineering Science 61, 4919-4929. [Pg.459]

Jones (1974) used the moment transformation of the population balance model to obtain a lumped parameter system representation of a batch crystallizer. This transformation facilitates the application of the continuous maximum principle to determine the cooling profile that maximizes the terminal size of the seed crystals. It was experimentally demonstrated that this strategy results in terminal seed size larger than that obtained using natural cooling or controlled cooling at constant nucleation rate. This method is limited in the sense that the objective function is restricted to some combination of the CSD moments. In addition, the moment equations do not close for cases in which the growth rate is more than linearly dependent on the crystal size or when fines destruction is... [Pg.223]

Jones (1974) used control vector iteration on the lumped parameter system resulting from the moment transformation of the population balance to determine the cooling policy that maximizes the terminal size of the seed crystals subject to 7 (0e[7o. Tf] for all te[0, tf. This problem, along with the additional constraint... [Pg.225]


See other pages where Population balance moment transformation is mentioned: [Pg.54]    [Pg.251]    [Pg.151]    [Pg.240]    [Pg.1079]    [Pg.132]    [Pg.224]    [Pg.54]    [Pg.251]    [Pg.282]    [Pg.282]    [Pg.995]    [Pg.642]   
See also in sourсe #XX -- [ Pg.5 , Pg.54 ]




SEARCH



Moment Transformation of the Population Balance Equation

Population balance

Population balance, equation moment transformation

© 2024 chempedia.info