Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyunsaturated fatty acids hydroperoxides

Kaplan E. and Ansari K. (1984). Reduction of polyunsaturated fatty acid hydroperoxides by human brain glutathione peroxidase. Lipids 19 784-789. [Pg.233]

Scheme 4.1. Porter s approach to polyunsaturated fatty acid hydroperoxides. Scheme 4.1. Porter s approach to polyunsaturated fatty acid hydroperoxides.
Oxylipins are commonly found metabolites in higher plants and most of them originate from polyunsaturated fatty acid hydroperoxides by enzymatic transformations which have been extensively studied (for recent reviews, see 1,2). Two well characterized enzymes a lyase and an allene oxide synthase were shown to degrade hydroperoxides into compounds of physiological importance since they can ultimately yield fragrances or plant hormones such as jasmonic acid. We have recently reported a new fate for fatty acid hydroperoxides the peroxygenase pathway. It involves two enzyme activities i.e. a peroxygenase and an epoxide hydrolase which lead to the formation of epoxidized fatty acids and their derived dihydrodiols which are relevant to plant defense mechanisms. [Pg.262]

Lipoxygenase-Catalyzed Oxidations. Lipoxygenase-1 catalyzes the incorporation of dioxygen into polyunsaturated fatty acids possessing a l(Z),4(Z)-pentadienyi moiety to yield ( ),(Z)-conjugated hydroperoxides. A highly active preparation of the enzyme from soybean is commercially available in purified form. From a practical standpoint it is important to mention that the substrate does not need to be in solution to undergo the oxidation. Indeed, the treatment of 28 g/L of linoleic acid [60-33-3] with 2 mg of the enzyme results in (135)-hydroperoxide of linoleic acid in 80% yield... [Pg.349]

Corongui, F.P., Poll, G., Diansani, M.U., Cheeseman, K.H. and Slater, T.F. (1986). Lipid peroxidation and molecular damage to polyunsaturated fatty acids in rat liver. Recognition of two classes of hydroperoxides formed under conditions in vivo. Chem. Biol. Interactions 59, 147-155. [Pg.19]

The accumulation of hydroperoxides and their subsequent decomposition to alkoxyl and peroxyl radicals can accelerate the chain reaction of polyunsaturated fatty-acid p>eroxidation leading to oxidative damage to cells and membranes as well as lipoproteins. It is well-recognized that transition metals or haem proteins, through their... [Pg.40]

Figure 17.2 Lipid peroxidation scheme. LH, a polyunsaturated fatty acid LOOM, lipid hydroperoxide LOH, lipid alcohol L, lipid radical LOO, lipid hydroperoxyl radical LO, lipid alkoxyl radical. Initiation the LH hydrogen is abstracted by reactive oxygen (e.g. lipid alkyl radical, lipid alkoxy radical, lipid hydroperoxyl radical, hydroxy radical, etc.) to produce a new lipid alkyl radical, L. Propagation the lipid alkyl, alkoxyl or hydroperoxyl radical abstracts hydrogen from the neighbouring LH to generate a new L radical. Figure 17.2 Lipid peroxidation scheme. LH, a polyunsaturated fatty acid LOOM, lipid hydroperoxide LOH, lipid alcohol L, lipid radical LOO, lipid hydroperoxyl radical LO, lipid alkoxyl radical. Initiation the LH hydrogen is abstracted by reactive oxygen (e.g. lipid alkyl radical, lipid alkoxy radical, lipid hydroperoxyl radical, hydroxy radical, etc.) to produce a new lipid alkyl radical, L. Propagation the lipid alkyl, alkoxyl or hydroperoxyl radical abstracts hydrogen from the neighbouring LH to generate a new L radical.
Reaction yields depend on the nature of the substrate. Linseed oil contains two polyunsaturated fatty acids 50% linolenic acid and 18% linoleic acid. The corresponding hydroperoxides are obtained with low yields. [Pg.576]

As a reasonable biogenetie pathway for the enzymatic conversion of the polyunsaturated fatty acid 3 into the bicyclic peroxide 4, the free radical mechanism in Equation 3 was postulated 9). That such a free radical process is a viable mechanism has been indicated by model studies in which prostaglandin-like products were obtained from the autoxidation of methyl linolenate 10> and from the treatment of unsaturated lipid hydroperoxides with free radical initiators U). [Pg.127]

Oxidation to CO of biodiesel results in the formation of hydroperoxides. The formation of a hydroperoxide follows a well-known peroxidation chain mechanism. Oxidative lipid modifications occur through lipid peroxidation mechanisms in which free radicals and reactive oxygen species abstract a methylene hydrogen atom from polyunsaturated fatty acids, producing a carbon-centered lipid radical. Spontaneous rearrangement of the 1,4-pentadiene yields a conjugated diene, which reacts with molecular oxygen to form a lipid peroxyl radical. [Pg.74]

It is the damage to DNA in the epithelial cells of the skin that is usually considered to be the cause of the development of melanoma due to excessive exposure to sunlight (Chapter 21). However, an alternative or additional mechanism could be the damage to polyunsaturated fatty acids in membrane phospholipid in the epithelial cells. This could be due, as in the case of DNA damage, to the local production of free radicals (Appendix 9.6). The damaged polyunsaturated fatty acids (e.g. peroxidised or hydroperoxide fatty acids) will disrupt the membrane which might facilitate the binding of key proteins of proliferation to these membranes or result in the production of abnormal eicosanoids either of which could facilitate inappropriate proliferation. [Pg.463]

In 1990, Triantaphylidds and coworkers reported on the preparative enzymatic synthesis of hnoleic acid (135) hydroperoxide 24a using soybean lipoxygenase-1. In this dioxygenation asymmetry is induced by the catalyst, the enzyme. The reaction was later used by Dussault and also by Baba and coworkers as key step in the preparation of more complex peroxides. The enzyme is a non-heme iron dioxygenase which catalyzes the incorporation of dioxygen into polyunsaturated fatty acids to yield E,Z conjugated diene hydroperoxides 24a-d. With this enzymatic method, the hydroperoxide 24a could... [Pg.339]

Hydroperoxide formation by the ene reaction path may lead to formation of conjugated double bonds in polyunsaturated fatty acids (see Section V.A) this reaction is concurrent with POV increase. An increase of the CDV, as measured from the absorbance at 233 nm, therefore indicates oxidation of polyunsaturated lipids. A strong correlation exists between CDV predicted from the absorbance in the 1100 to 2200 nm NIR region and CDV determined by the Ti Ia-64 AOCS official method , by UV spectrophotometry at 233 nm. The method was applied to determine CDV for oxidized soybean oil. A secondary absorption maximum of lesser intensity appears in the 260-280 mn range, and is assigned to ketone dienes . [Pg.671]

The volatiles produced by the LOX pathway and autoxidation are typically volatile aldehydes and alcohols responsible for fresh and green sensorial notes. In the LOX pathway these volatile compounds are produced in response to stress, during ripening or after damage of the plant tissue. The pathway is illustrated in Scheme 7.2. Precursors of the LOX (EC 1.13.11.12) catalysed reactions are Cis-polyunsaturated fatty acids with a (Z,Z)-l,4-pentadiene moiety such as linoleic and a-linolenic acids that are typically oxidised into 9-, 10- or 13-hydro-peroxides depending on the specificity of the LOX catalyst. These compounds are then cleaved by hydroperoxide lyase (HPL) into mainly C, C9 and Cio aldehydes, which can then be reduced into the corresponding alcohols by alcohol dehydrogenase (ADH EC 1.1.1.1) (Scheme 7.2) [21, 22]. The production of volatile compounds by the LOX pathway depends, however, on the plants as they have different sets of enzymes, pH in the cells, fatty acid composition of cell walls, etc. [Pg.137]

In nature, the green notes are produced after the destruction of the plants tissue (leaves, fruits or vegetables). Destruction of the cell wall leads to a cascade of enzyme-catalysed reactions polyunsaturated fatty acids with the diene system described before are converted into hydroperoxides by LOX catalysis. The hydroperoxide lyase cleaves the hydroperoxides in the whole cascade, oxireduc-tases are involved too. The biotechnological large-scale production of natural green notes follows the natural pathway. [Pg.496]


See other pages where Polyunsaturated fatty acids hydroperoxides is mentioned: [Pg.119]    [Pg.149]    [Pg.539]    [Pg.122]    [Pg.417]    [Pg.119]    [Pg.149]    [Pg.539]    [Pg.122]    [Pg.417]    [Pg.44]    [Pg.13]    [Pg.40]    [Pg.47]    [Pg.76]    [Pg.576]    [Pg.390]    [Pg.195]    [Pg.121]    [Pg.926]    [Pg.1163]    [Pg.74]    [Pg.308]    [Pg.193]    [Pg.619]    [Pg.661]    [Pg.945]    [Pg.951]    [Pg.977]    [Pg.926]    [Pg.1163]    [Pg.192]    [Pg.193]    [Pg.39]    [Pg.339]    [Pg.661]    [Pg.671]    [Pg.945]    [Pg.951]    [Pg.977]   
See also in sourсe #XX -- [ Pg.33 , Pg.273 , Pg.274 ]




SEARCH



Fatty hydroperoxidation

Polyunsaturated

Polyunsaturated acids

Polyunsaturated fatty acids

© 2024 chempedia.info