Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene tacticity

Figure 1.2 shows sections of polymer chains of these three types the substituent R equals phenyl for polystyrene and methyl for polypropylene. The general term for this stereoregularity is tacticity, a term derived from the Greek word meaning to put in order. ... [Pg.26]

Specialty Polystyrenes. These include ionomers and PS of specified tacticity, as well as stabilized PS. [Pg.506]

Polystyrene produced by free-radical polymerisation techniques is part syndio-tactic and part atactic in structure and therefore amorphous. In 1955 Natta and his co-workers reported the preparation of substantially isotactic polystyrene using aluminium alkyl-titanium halide catalyst complexes. Similar systems were also patented by Ziegler at about the same time. The use of n-butyl-lithium as a catalyst has been described. Whereas at room temperature atactic polymers are produced, polymerisation at -30°C leads to isotactic polymer, with a narrow molecular weight distribution. [Pg.454]

In this stage of the investigation, poly(methyl methacrylates) (PMMAs) were selected as the polymeric probes of intermediate polarity. Polymers of medium broad molar mass distribution and of low tacticity (14) were a gift of Dr. W. Wunderlich of Rohm Co., Darmstadt, Germany. Their molar masses ranged from 1.6 X 10" to 6.13 X 10 g-mol. For some comparative tests, narrow polystyrene standards from Pressure Co. (Pittsburgh, PA) were used. [Pg.448]

Polymers that incorporate steric centers into their backbones can display various types of tacticity. The three principal types of tacticity are isotactic, syndiotactic, and atactic, as illustrated in Fig. 1.8 for polypropylene. Other polymers that display tacticity include polystyrene and poly a-olefins,... [Pg.105]

Small amounts of iso tactic polystyrene have been synthesized in the laboratory using noncommercial polymerization techniques. These polymers are capable of partially crystallizing, albeit at a very slow rate. Syndiotactic polystyrene was available commercially for several years, but its continued production proved unprofitable. [Pg.328]

A third factor influencing the value of Tg is backbone symmetry, which affects the shape of the potential wells for bond rotations. This effect is illustrated by the pairs of polymers polypropylene (Tg=10 C) and polyisobutylene (Tg = -70 C), and poly(vinyi chloride) (Tg=87 C) and poly(vinylidene chloride) (Tg =- 19°C). The symmetrical polymers have lower glass transition temperatures than the unsymmetrical polymers despite the extra side group, although polystyrene (100 C) and poly(a-meth-ylstyrene) are illustrative exceptions. However, tacticity plays a very important role (54) in unsymmetrical polymers. Thus syndiotactic and isoitactic poly( methyl methacrylate) have Tg values of 115 and 45 C respectively. [Pg.18]

In figure 1 we present the experimental and calculated mK values of the copolymer poly(styrene-co-p-bromostyrene). From this study (3) we were able to show unequivocally that the tacticity of this polystyrene sample is pr — 0.55, where pr is the probability of racemic dyad replication. [Pg.237]

Poly(styrene)-poly(acrylate) colloidal suspensions, 7 275 Polystyrene/polyfmethyl methacrylate) commercial block copolymers, 7 648t Polystyrenes. See also Polystyrene (PS) commercial, 23 364 general-purpose, 23 364 specialty, 23 364-366 stabilized, 23 366 tactic, 23 365... [Pg.744]

Although PS is largely commercially produced using free radical polymerization, it can be produced by all four major techniques—anionic, cationic, free radical, and coordination-type systems. All of the tactic forms can be formed employing these systems. The most important of the tactic forms is syndiotactic polystyrene (sPS). Metallocene-produced sPS is a semicrystalline material with a of 270°C. It was initially produced by Dow in 1997 under the trade name Questra. It has good chemical and solvent resistance in contrast to regular PS that has generally poor chemical and solvent resistance because of the presence of voids that are exploited by the solvents and chemicals. [Pg.194]

Remarkable differences in the G values of F12 were also recorded in atactic and syndiotactic polystyrene. The tacticity itself was also affected by the irradiation. Fligh-temperature irradiation with y-rays caused the reduction of isotacticity of isotactic PMMA... [Pg.561]

Meyerhoff and Cantow (118) compared the relationships between [ /] and MW for polystyrenes prepared in various ways they found that for given Mw isotactic polystyrenes produced with Ziegler catalysts had the highest [ij], followed by low-conversion free-radical polymers both high-conversion (80%) and anionic (Szwarc) polymers had lower [ij]. These differences were all attributed to differences in LCB, though in principle differences in tacticity such as those between Ziegler and free-radical or anionic polymers could produce differences in the coil size in solution and hence in [iy]. [Pg.57]

The tacticity of anionically prepared polystyrenes has been the subject of extensive study by a number of groups of workers, mostly by means of 13C-NMR spectroscopy. From a study of the aromatic Cl resonances, Matsuzaki and coworkers found 234) that there is a tendency towards syndiotacticity when using -butyl-Iithium in toluene as initiator. From the sensitivity of the CMR spectrum to the nature of the solvent employed it was concluded that the polymerization did not conform to Bernoullian statistics. Randall examined the methylene resonances in the CMR spectrum and concluded that butyllithium initiated polystyrene is essentially atactic 235) and that propagation is Bernouillian. Uryu et al.236) examined polystyrene... [Pg.59]

The affect of polymer stereoregularity in the chains on the PAL data has also been studied. Hamielec et al [56] found what appears to be an increased lifetime (hole size) with increased randomness of the chain configuration in a series of polyvinlychloride (PVC) polymers, despite the large degree of scatter in the sample (probably due to the fact that a series of commercially available products were used.). They however found little correlation with tacticity in polypropylene. More recently a PAL study on a series of very well characterized polystyrene and poly(p-methlystyrene) samples of differing tacticity [57] was performed. In addition to finding that the polystyrene samples have smaller free volume holes than the poly(p-methylstyrene) samples, they found that the syndiotactic samples had broader hole distributions than the attactic samples. [Pg.268]


See other pages where Polystyrene tacticity is mentioned: [Pg.8]    [Pg.352]    [Pg.8]    [Pg.352]    [Pg.265]    [Pg.506]    [Pg.520]    [Pg.41]    [Pg.469]    [Pg.107]    [Pg.248]    [Pg.139]    [Pg.18]    [Pg.160]    [Pg.918]    [Pg.194]    [Pg.709]    [Pg.27]    [Pg.172]    [Pg.183]    [Pg.82]    [Pg.150]    [Pg.709]    [Pg.33]    [Pg.557]    [Pg.177]    [Pg.1545]    [Pg.758]    [Pg.469]    [Pg.30]    [Pg.520]    [Pg.114]    [Pg.276]    [Pg.566]    [Pg.27]    [Pg.51]    [Pg.1502]   
See also in sourсe #XX -- [ Pg.81 ]

See also in sourсe #XX -- [ Pg.175 ]

See also in sourсe #XX -- [ Pg.8 ]

See also in sourсe #XX -- [ Pg.27 , Pg.72 , Pg.82 ]




SEARCH



Tactical

Tacticities

Tacticity

© 2024 chempedia.info