Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene radiations

D. Li, H. Xia, J. Peng, M. Zhai, G. Wei, J. Li, and J. Qiao, Radiation preparation of nano-powdered styrene-butadiene rubber (SBR) and its toughening effect for polystyrene and high-impact polystyrene, Radiat. Phys. Chem., 76(11-12) 1732-1735, November-December 2007. [Pg.293]

Suzuki, N., Takamori, A., Baba, J., Matsuda, J., Hyodo, T., Okamoto, Y., Miyagi, H. (2000) Positron annihilation study of high impact polystyrene . Radiation Physics and Chemistry. 58,593. [Pg.392]

ETHYLENE We discussed ethylene production in an earlier boxed essay (Section 5 1) where it was pointed out that the output of the U S petrochemi cal industry exceeds 5 x 10 ° Ib/year Approximately 90% of this material is used for the preparation of four compounds (polyethylene ethylene oxide vinyl chloride and styrene) with polymerization to poly ethylene accounting for half the total Both vinyl chloride and styrene are polymerized to give poly(vinyl chloride) and polystyrene respectively (see Table 6 5) Ethylene oxide is a starting material for the preparation of ethylene glycol for use as an an tifreeze in automobile radiators and in the produc tion of polyester fibers (see the boxed essay Condensation Polymers Polyamides and Polyesters in Chapter 20)... [Pg.269]

Laboratory tests indicated that gamma radiation treatment and cross-linking using triaHylcyanurate or acetylene produced a flexible recycled plastic from mixtures of polyethylene, polypropylene, general-purpose polystyrene, and high impact grade PS (62). [Pg.232]

Susceptibility to radiation damage must be considered seriously if reference samples are to be calibrated for use in place of absolute systems. For the measurement of absolute C He, H) cross sections, films of polystyrene (CH) (which is relatively radiation hard) have been used successfiiUy, the RBS determination of carbon providing implied quantitation for the hydrogen present in the film. For a durable laboratory reference sample, however, there is much to recommend a known ion-implanted dose of H deep within Si or SiC, where the loss of hydrogen under room temperature irradiation will be neghgible. [Pg.498]

Stabilisers. Stabilisers prevent deterioration of the polymer due to environmental factors. Antioxidants are added to ABS, polyethylene and polystyrene. Heat stabilisers are required in processing polyvinyl chloride. Stabilisers also prevent deterioration due to ultra-violet radiation. [Pg.3]

The theory of radiation-induced grafting has received extensive treatment. The direct effect of ionizing radiation in material is to produce active radical sites. A material s sensitivity to radiation ionization is reflected in its G value, which represents the number of radicals in a specific type (e.g., peroxy or allyl) produced in the material per 100 eV of energy absorbed. For example, the G value of poly(vinyl chloride) is 10-15, of PE is 6-8, and of polystyrene is 1.5-3. Regarding monomers, the G value of methyl methacrylate is 11.5, of acrylonitrile is 5.6, and of styrene is >0.69. [Pg.508]

Applications of radiation grafting in the coating industry for improving adhesion and other properties has been an active field. For instance, grafting of styrene onto polyester fibers was found to improve the interfa-cial adhesion between grafted chopped polyester fibers and polystyrene used as a matrix [139]. [Pg.512]

An effective method of NVF chemical modification is graft copolymerization [34,35]. This reaction is initiated by free radicals of the cellulose molecule. The cellulose is treated with an aqueous solution with selected ions and is exposed to a high-energy radiation. Then, the cellulose molecule cracks and radicals are formed. Afterwards, the radical sites of the cellulose are treated with a suitable solution (compatible with the polymer matrix), for example vinyl monomer [35] acrylonitrile [34], methyl methacrylate [47], polystyrene [41]. The resulting copolymer possesses properties characteristic of both fibrous cellulose and grafted polymer. [Pg.796]

Asathana S., Majoros I., and Kennedy J.P., TPEs Star-block comprising multiple polystyrene-b-PIB arms radiating from a crossUnked polydivinylbengene core. Rubber Chem. TechnoL, 71, 949, 1998. Shim J.S. and Kennedy J.P., Novel thermoplastic elastomers. II. Properties of star-block copolymers of PST-b-PlB arms emanating from cyclosiloxane cores, J. Polym. Set, Part A, Polym. Chem., 37, 815, 1999. [Pg.155]

The yield of cross-linking depends on the microstructure of polybutadiene and purity of the polymer as well as on whether it is irradiated in air or in vacuum. The cross-link yield, G(X), has been calculated to be lowest for trans and highest for vinyl isomer [339]. The introduction of styrene into the butadiene chain leads to a greater reduction in the yield of cross-linking, than the physical blends of polybutadiene and polystyrene [340]. This is due to the intra- and probably also intermolecular energy transfer from the butadiene to the styrene constituent and to the radiation stability of the latter unit. [Pg.880]

The SANS experiments of Clough et al. (21) on radiation crosslinked polystyrene are presented in Figure 9, and appear to fit the phantom network model well. However, these networks were prepared by random crosslinking, and the calculations given are for end-linked networks, which are not truly applicable. [Pg.273]

Figure 9. SANS measurements of R /Rt° and RL/R ° for stretched radiation cross-linked polystyrene. is determined by measurements in which the neutron is parallel (iso) and perpendicular (aniso) to the stretching direction. Mc is molecular weight between crosslinks. Theoretical curves 2 and 3 are drawn for tetrafunctional networks. Data from Ref. 21. Figure 9. SANS measurements of R /Rt° and RL/R ° for stretched radiation cross-linked polystyrene. is determined by measurements in which the neutron is parallel (iso) and perpendicular (aniso) to the stretching direction. Mc is molecular weight between crosslinks. Theoretical curves 2 and 3 are drawn for tetrafunctional networks. Data from Ref. 21.
Our library synthesis was carried out with a set of 27 tube-shaped solid phase synthesis support, called MicroTubes. These supports are prepared by radiation grafting of polystyrene ( — 350 pmol) onto polypropylene tubes, chemically functionalizing the polystyrene with aminomethyl groups to afford about 55 imol of amine per tube, inserting a reusable Rf ID tag into each tube, and heat-sealing the tube ends to prevent loss of the tag. The chemical conversion of all 36 aminomethyl tubes was carried out simultaneously using standard procedures with rink amide linker, each with —46 pmol of available amine per tube.1 2... [Pg.21]

A substantial intramolecular protective effect by phenyl groups in polymers is shown by the low G values for Hz and crosslinking in polystyrene (substituent phenyl) and in polyarylene sulfones (backbone phenyl), as well as many other aromatic polymers. The relative radiation resistance of different aromatic groups in polymers has not been extensively studied, but appears to be similar, except that biphenyl provides increased protection. Studies on various poly(amino acid)s indicate that the phenol group is particularly radiation resistant. [Pg.5]


See other pages where Polystyrene radiations is mentioned: [Pg.374]    [Pg.68]    [Pg.506]    [Pg.511]    [Pg.517]    [Pg.490]    [Pg.498]    [Pg.266]    [Pg.435]    [Pg.484]    [Pg.146]    [Pg.147]    [Pg.172]    [Pg.183]    [Pg.432]    [Pg.626]    [Pg.361]    [Pg.370]    [Pg.60]    [Pg.135]    [Pg.136]    [Pg.860]    [Pg.155]    [Pg.461]    [Pg.465]    [Pg.114]    [Pg.373]    [Pg.351]    [Pg.9]    [Pg.59]    [Pg.414]    [Pg.382]   
See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Polystyrene radiation effects

Polystyrene radiation-induced polymerization

Polystyrene, radiation-grafted

© 2024 chempedia.info