Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polysaccharides reduction

The significance of phenoxy anions is well recognized in the isolation of kraft and other water-insoluble technical lignins by acid precipitation. The ioniza tion of phenoHc hydroxyl groups coupled with the reduction of molecular size renders native lignin soluble in the aqueous pulping solution, thus enabling its separation from the polysaccharide components of wood. [Pg.143]

Many microbial polysaccharides show pseudoplastic flow, also known as shear thinning. When solutions of these polysaccharides are sheared, the molecules align in the shear field and the effective viscosity is reduced. This reduction of viscosity is not a consequence of degradation (unless the shear rate exceeds 105 s 1) since the viscosity recovers immediately when die shear rate is decreased. This combination of viscous and elastic behaviour, known as viscoelasticity, distinguishes microbial viscosifiers from solutions of other thickeners. Examples of microbial viscosifiers are ... [Pg.213]

The generic term carbohydrate includes monosaccharides, oligosaccharides and polysaccharides as well as substances derived from monosaccharides by reduction... [Pg.49]

Recent progress of basic and application studies in chitin chemistry was reviewed by Kurita (2001) with emphasis on the controlled modification reactions for the preparation of chitin derivatives. The reactions discussed include hydrolysis of main chain, deacetylation, acylation, M-phthaloylation, tosylation, alkylation, Schiff base formation, reductive alkylation, 0-carboxymethylation, N-carboxyalkylation, silylation, and graft copolymerization. For conducting modification reactions in a facile and controlled manner, some soluble chitin derivatives are convenient. Among soluble precursors, N-phthaloyl chitosan is particularly useful and made possible a series of regioselective and quantitative substitutions that was otherwise difficult. One of the important achievements based on this organosoluble precursor is the synthesis of nonnatural branched polysaccharides that have sugar branches at a specific site of the linear chitin or chitosan backbone [89]. [Pg.158]

The results of the mechanical properties can be explained on the basis of morphology. The scanning electron micrographs (SEM) of fractured samples of biocomposites at 40 phr loading are shown in figure. 3. It can be seen that all the bionanofillers are well dispersed into polymer matrix without much agglomeration. This is due to the better compatibility between the modified polysaccharides nanoparticles and the NR matrix (Fig. 4A and B). While in case of unmodified polysaccharides nanoparticles the reduction in size compensates for the hydrophilic nature (Fig. 3C and D). In case of CB composites (Fig. 3E) relatively coarse, two-phase morphology is seen. [Pg.128]

Biopolymers have diverse roles to play in the advancement of green nanotechnology. Nanosized derivatives of polysaccharides like starch and cellulose can be synthesized in bulk and can be used for the development of bionanocomposites. They can be promising substitutes of environment pollutant carbon black for reinforcement of rubbers even at higher loadings (upto SOphr) via commercially viable process. The combined effect of size reduction and organic modification improves filler-matrix adhesion and in turn the performance of polysaccharides. The study opens up a new and green alternative for reinforcement of rubbers. [Pg.138]

Some sugar residues in bacterial polysaccharides are etherified with lactic acid. The biosynthesis of these involves C)-alkylation, by reaction with enol-pyruvate phosphate, to an enol ether (34) of pyruvic acid, followed by reduction to the (R) or (5) form of the lactic acid ether (35). The enol ether may also react in a different manner, giving a cyclic acetal (36) of pyruvic acid. [Pg.303]

Exudate collection in trap solutions usually requires subsequent concentration steps (vacuum evaporation, lyophilization) due to the low concentration of exudate compounds. Depending on the composition of the trap solution, the reduction of sample volume can lead to high salt concentrations, which may interfere with subsequent analysis or may even cause irreversible precipitation of certain exudate compounds (e.g., Ca-citrate, Ca-oxalate, proteins). Therefore, if possible, removal of interfering salts by use of ion exchange resins prior to sample concentration is recommended. Alternatively, solid-phase extraction techniques may be employed for enrichment of exudate compounds from the diluted trap solution (11,22). High-molecular-weight compounds may be concentrated by precipitation with organic solvents [methanol, ethanol, acetone 80% (v/v) for polysaccharides and proteins] or acidification [trichloroacetic acid 10% (w/v), per-... [Pg.44]

Charged polysaccharides can also serve as templates for the growth of metallic, semiconductor and magnetic nanoparticles. For instance, chitosan has been reported as a catalyst and stabilizing agent in the production of gold nanoparticles by the reduction oftetrachloroauric (III) acid by acetic acid. The biopolymer controls the size and the distribution of the synthesized Au nanoparticles and allows the preparation... [Pg.20]

Dermatan sulfate, also termed chondroitin sulfate B, a related glycosaminoglycan constituent of connective tissue, was known to be composed of galactosamine and a uronic acid, originally believed to be glucuronic acid but then claimed to be iduronic acid based largely on color reactions and paper chromatography. However, the d or L-enantiomer status of the latter monosaccharide was not clear. Jeanloz and Stoffyn unequivocally characterized the monosaccharide as L-iduronic acid by consecutive desulfation, reduction, and hydrolysis of the polysaccharide, followed by isolation of the crystalline 2,3,4-tri-0-acetyl-l,6-anhydro-/ -L-idopyranose, which was shown to be identical to an authentic specimen synthesized from 1,2-0-isopropylidene-/ -L-idofuranose.34... [Pg.8]

In some instances, reducing sugars are present that can be reductively aminated without prior periodate treatment. A reducing end of a monosaccharide, a disaccharide, or a polysaccharide chain may be coupled to a diamine by reductive amination to yield an aminoalkyl derivative bound by a secondary amine linkage (Figure 1.96). Also see Section 4.6, this chapter, for an extensive discussion on carbohydrate modification techniques. [Pg.123]


See other pages where Polysaccharides reduction is mentioned: [Pg.14]    [Pg.354]    [Pg.264]    [Pg.59]    [Pg.23]    [Pg.14]    [Pg.354]    [Pg.264]    [Pg.59]    [Pg.23]    [Pg.33]    [Pg.270]    [Pg.497]    [Pg.35]    [Pg.127]    [Pg.481]    [Pg.99]    [Pg.832]    [Pg.572]    [Pg.54]    [Pg.181]    [Pg.186]    [Pg.134]    [Pg.286]    [Pg.304]    [Pg.267]    [Pg.368]    [Pg.130]    [Pg.185]    [Pg.241]    [Pg.593]    [Pg.631]    [Pg.632]    [Pg.240]    [Pg.1043]    [Pg.139]    [Pg.195]    [Pg.233]    [Pg.352]    [Pg.113]    [Pg.211]    [Pg.307]    [Pg.21]    [Pg.41]    [Pg.49]   
See also in sourсe #XX -- [ Pg.103 ]




SEARCH



Polysaccharide reductive polymerization

Polysaccharides reduction with borohydride

Polysaccharides reductive amination

Polysaccharides reductive-cleavage

© 2024 chempedia.info