Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polynuclear aromatics, analytical determination

Standardization. Standardization in analytical chemistry, in which standards are used to relate the instrument signal to compound concentration, is the critical function for determining the relative concentrations of species In a wide variety of matrices. Environmental Standard Reference Materials (SRM s) have been developed for various polynuclear aromatic hydrocarbons (PAH s). Information on SRM s can be obtained from the Office of Standard Reference Materials, National Bureau of Standards, Gaithersburg, MD 20899. Summarized in Table VII, these SRM s range from "pure compounds" in aqueous and organic solvents to "natural" matrices such as shale oil and urban and diesel particulate materials. [Pg.115]

The most commonplace substrates in energy-transfer analytical CL methods are aryl oxalates such as to(2,4,6-trichlorophenyl) oxalate (TCPO) and z s(2,4-dinitrophenyl) oxalate (DNPO), which are oxidized with hydrogen peroxide [7, 8], In this process, which is known as the peroxyoxalate-CL (PO-CL) reaction, the fluorophore analyte is a native or derivatized fluorescent organic substance such as a polynuclear aromatic hydrocarbon, dansylamino acid, carboxylic acid, phenothiazine, or catecholamines, for example. The mechanism of the reaction between aryl oxalates and hydrogen peroxide is believed to generate dioxetane-l,2-dione, which may itself decompose to yield an excited-state species. Its interaction with a suitable fluorophore results in energy transfer to the fluorophore, and the subsequent emission can be exploited to develop analytical CL-based determinations. [Pg.179]

Enzyme immunoassay kits are now available for qualitative field testing or for laboratory screening and semiquantitative analysis of pesticides, herbicides, polychlorinated biphenyls (PCBs), mononuclear and polynuclear aromatic hydrocarbons, pentachlorophenol, nitroorganics, and many other compounds in aqueous and soil samples. Certain analytes may be quantitatively determined as well, with a degree of accuracy comparable to gas chromatography or high performance liquid chromatography determination. The method is rapid and inexpensive. [Pg.109]

Sonnefeld, W. J., Zoller, W. H. May, W. E. (1983). Dynamic coupled-column liquid chromatographic determination of ambient temperature vapor pressures of polynuclear aromatic hydrocarbons. Analytical Chemistry, 55, 275-80. [Pg.209]

The first considerations in determining the most appropriate SPE methodology are the structure and polarity of the analytes of interest. Table 7.1 shows a selection of environmentally important compounds as examples for SPE methods development from aqueous solution. The polarity range of environmentally important analytes is broad and stretches from nonpolar compounds, such as polychlorinated biphenyls (PCBs), dioxin, and l,l,l-trichloro-2-2-bis(4-chlorophenyl)ethane (DDT), to moderately nonpolar compounds, such as polynuclear aromatic hydrocarbons (PAHs), to polar compounds such as the herbicides. The most polar compounds are those containing multiple polar functional groups or an ionic functional group, either anionic or cationic. The type of SPE cartridge and elution solvent that are used depends on the polarity of the compound. [Pg.161]

An experimental study has been carried out with peat samples from the forest area of Brunei Darussalam. We should note here that the measurement of emission products requires comprehensive analytical equipment. Hydrocarbons (C1-C4) are determined by gas chromatography with flame ionization detection (GC/FID), CO2 and O2 are analyzed by gas chromatography with thermal conductivity detection (GC/TCD), and CO, by gas chromatography with electron capture detection (GC/ECD). Aldehydes and polynuclear aromatic hydrocarbons (PAHs) are determined by gas chromatography with mass spectrometry (GC/MS). [Pg.121]

The United States Environmental Protection Agency (USEPA) regulates the aromatic content of diesel fuels. California Air Resources Board (CARB) regulations place limits on the total aromatics content and polynuclear aromatic hydrocarbon content of motor diesel fuel, thus requiring an appropriate analytical determination to ensure compliance with the regulations. Producers of diesel fuels will require similar determinations for process and quality control. This test method can be used to make such determinations. [Pg.806]

Extraction Solvent. Dimethyl sulfoxide is immiscible with alkanes but is a good solvent for most unsaturated and polar compounds. Thus, it can be used to separate olefins from paraffins (93). It is used in the Institute Fransais du Pntrole (IFF) process for extracting aromatic hydrocarbons from refinery streams (94). It is also used in the analytical procedure for determining polynuclear hydrocarbons in food additives (qv) of petroleum origin (95). [Pg.112]


See other pages where Polynuclear aromatics, analytical determination is mentioned: [Pg.378]    [Pg.204]    [Pg.566]    [Pg.378]    [Pg.45]    [Pg.187]    [Pg.376]    [Pg.11]    [Pg.275]    [Pg.285]    [Pg.194]    [Pg.570]    [Pg.303]    [Pg.275]    [Pg.165]    [Pg.1424]   
See also in sourсe #XX -- [ Pg.176 ]




SEARCH



Analytical determinability

Analytical determinations

POLYNUCLEAR AROMATIC

Polynuclear aromatics

Polynuclear aromatics aromatic

Polynuclear aromatics, analytical

© 2024 chempedia.info