Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers cationic polymerization

Introduction to polymers Cationic polymerization Conducting organic polymers Radical polymerization Polymers from dienes Polyesters and polyamides Polysaccharides N-Glycosides (DNA and RNA)... [Pg.1269]

Dimerization in concentrated sulfuric acid occurs mainly with those alkenes that form tertiary carbocations In some cases reaction conditions can be developed that favor the formation of higher molecular weight polymers Because these reactions proceed by way of carbocation intermediates the process is referred to as cationic polymerization We made special mention m Section 5 1 of the enormous volume of ethylene and propene production in the petrochemical industry The accompanying box summarizes the principal uses of these alkenes Most of the ethylene is converted to polyethylene, a high molecular weight polymer of ethylene Polyethylene cannot be prepared by cationic polymerization but is the simplest example of a polymer that is produced on a large scale by free radical polymerization... [Pg.267]

Polyacetaldehyde, a mbbery polymer with an acetal stmcture, was first discovered in 1936 (49,50). More recentiy, it has been shown that a white, nontacky, and highly elastic polymer can be formed by cationic polymerization using BF in Hquid ethylene (51). At temperatures below —75° C using anionic initiators, such as metal alkyls in a hydrocarbon solvent, a crystalline, isotactic polymer is obtained (52). This polymer also has an acetal [poly(oxymethylene)] stmcture. Molecular weights in the range of 800,000—3,000,000 have been reported. Polyacetaldehyde is unstable and depolymerizes in a few days to acetaldehyde. The methods used for stabilizing polyformaldehyde have not been successful with poly acetaldehyde and the polymer has no practical significance (see Acetalresins). [Pg.50]

Butyl mbber, a copolymer of isobutjiene with 0.5—2.5% isoprene to make vulcanization possible, is the most important commercial polymer made by cationic polymerization (see Elastomers, synthetic-butyl rubber). The polymerization is initiated by water in conjunction with AlCl and carried out at low temperature (—90 to —100° C) to prevent chain transfer that limits the molecular weight (1). Another important commercial appHcation of cationic polymerization is the manufacture of polybutenes, low molecular weight copolymers of isobutylene and a smaller amount of other butenes (1) used in adhesives, sealants, lubricants, viscosity improvers, etc. [Pg.244]

The observation in 1949 (4) that isobutyl vinyl ether (IBVE) can be polymerized with stereoregularity ushered in the stereochemical study of polymers, eventually leading to the development of stereoregular polypropylene. In fact, vinyl ethers were key monomers in the early polymer Hterature. Eor example, ethyl vinyl ether (EVE) was first polymerized in the presence of iodine in 1878 and the overall polymerization was systematically studied during the 1920s (5). There has been much academic interest in living cationic polymerization of vinyl ethers and in the unusual compatibiUty of poly(MVE) with polystyrene. [Pg.514]

Complexation of the initiator and/or modification with cocatalysts or activators affords greater polymerization activity (11). Many of the patented processes for commercially available polymers such as poly(MVE) employ BE etherate (12), although vinyl ethers can be polymerized with a variety of acidic compounds, even those unable to initiate other cationic polymerizations of less reactive monomers such as isobutene. Examples are protonic acids (13), Ziegler-Natta catalysts (14), and actinic radiation (15,16). [Pg.514]

Polymerization. Chloroprene is normally polymerized with free-radical catalysts in aqueous emulsion, limiting the conversion of monomer to avoid formation of cross-linked insoluble polymer. At a typical temperature of 40°C, the polymer is largely head-to-taH in orientation and trans in configuration, but modest amounts of head-to-head, cis, 1,2, and 3,4 addition units can also be detected. A much more regular and highly crystalline polymer can be made at low temperature (11). Chloroprene can also be polymerized with cationic polymerization catalysts, giving a polymer with... [Pg.37]

A series of graft polymers on polychloroprene were made with isobutjiene, /-butyl vinyl ether, and a-methylstyrene by cationic polymerization in solution. The efficiency of the grafting reaction was improved by use of a proton trap, eg, 2,6-di-/-butylpyridine (68). [Pg.540]

The most important reaction with Lewis acids such as boron trifluoride etherate is polymerization (Scheme 30) (72MI50601). Other Lewis acids have been used SnCL, Bu 2A1C1, Bu sAl, Et2Zn, SO3, PFs, TiCU, AICI3, Pd(II) and Pt(II) salts. Trialkylaluminum, dialkylzinc and other alkyl metal initiators may partially hydrolyze to catalyze the polymerization by an anionic mechanism rather than the cationic one illustrated in Scheme 30. Cyclic dimers and trimers are often products of cationic polymerization reactions, and desulfurization of the monomer may occur. Polymerization of optically active thiiranes yields optically active polymers (75MI50600). [Pg.146]

Cationic polymerization in hot melts has been applied to epoxidized polymers [38,39]. No hot melts based on vinyl ether or other cation-sensitive functionalized polymers have been described in the literature. With cationic systems, it is important that the other ingredients in the adhesive be of low basicity to avoid scavenging the initiating acid generated by the photoinitiator. [Pg.736]

Crivello, J.V. and Lee, J.L., The synthesis, characterization and photoinitiated cationic polymerization of silicon-containing epoxy resins. J. Polym. Sci. Polym. Chem. Ed., 28, 479-503 (1990). [Pg.1037]

Dimerization in concentrated sulfuric acid occurs mainly with those alkenes that fonn tertiary carbocations. In some cases reaction conditions can be developed that favor the formation of higher molecular-weight polymers. Because these reactions proceed by way of carbocation intermediates, the process is refened to as cationic polymerization. [Pg.267]

The ionic liquid process has a number of advantages over traditional cationic polymerization processes such as the Cosden process, which employs a liquid-phase aluminium(III) chloride catalyst to polymerize butene feedstocks [30]. The separation and removal of the product from the ionic liquid phase as the reaction proceeds allows the polymer to be obtained simply and in a highly pure state. Indeed, the polymer contains so little of the ionic liquid that an aqueous wash step can be dispensed with. This separation also means that further reaction (e.g., isomerization) of the polymer s unsaturated ot-terminus is minimized. In addition to the ease of isolation of the desired product, the ionic liquid is not destroyed by any aqueous washing procedure and so can be reused in subsequent polymerization reactions, resulting in a reduction of operating costs. The ionic liquid technology does not require massive capital investment and is reported to be easily retrofitted to existing Cosden process plants. [Pg.322]

The controlled synthesis of polymers, as opposed to their undesired formation, is an area that has not received much academic interest. Most interest to date has been commercial, and focused on a narrow area the use ofchloroaluminate(III) ionic liquids for cationic polymerization reactions. The lack of publications in the area, together with the lack of detailed and useful synthetic information in the patent literature, places hurdles in front of those with limited loiowledge of ionic liquid technology who wish to employ it for polymerization studies. The expanding interest in ionic liquids as solvents for synthesis, most notably for the synthesis of discrete organic molecules, should stimulate interest in their use for polymer science. [Pg.333]

The majority of the literature reports deal with the reaction of calixarenes with Group I and II cations. Polymeric calixarenes have been the subject of a more recent innovation. Harris et al. [23] have prepared a calix[4]ar-ene methacrylate, its polymerization, and Na complex-ation (Scheme 3). They concluded that both monomers and polymers form stable complexes with sodium thiocyanate. [Pg.341]

Low-molecular weight azo compounds have frequently been used in cationic polymerizations producing azo-containing polymers. Thus, the combination of ionically and radically polymerizable monomers into block copolymers has been achieved. Azo compounds were used in all steps of cationic polymerization without any loss of azo function as initiators, as monomers and, finally, as terminating agents. [Pg.741]

Cationic polymerizations work better when the monomers possess an electron-donating group that stabilizes the intermediate carbocation. For example, isobutylene produces a stable carbocation, and usually copolymerizes with a small amount of isoprene using cationic initiators. The product polymer is a synthetic rubber widely used for tire inner tubes ... [Pg.307]

An interesting aspect of the benzofuran cationic polymerization was uncovered by Natta, Farina, Peraldo and Bressan who reported in 196160,61 that an asymmetric synthesis of an optically active poly(benzofuran) could be achieved by using AlCl2Et coupled with (-)j3-phenylalanine, (+)camphorsulphonic acid or with (-)brucine. The optical activity was definitely due to the asymmetric carbon atoms in the polymer chain, indicating that at least some of the polymer s macromolecules possessed a di-isotactic structure, v/ z.62 ... [Pg.64]


See other pages where Polymers cationic polymerization is mentioned: [Pg.1239]    [Pg.718]    [Pg.11]    [Pg.152]    [Pg.438]    [Pg.1239]    [Pg.718]    [Pg.11]    [Pg.152]    [Pg.438]    [Pg.245]    [Pg.135]    [Pg.364]    [Pg.482]    [Pg.47]    [Pg.227]    [Pg.429]    [Pg.517]    [Pg.525]    [Pg.434]    [Pg.492]    [Pg.157]    [Pg.1021]    [Pg.54]    [Pg.310]    [Pg.320]    [Pg.321]    [Pg.321]    [Pg.322]    [Pg.332]    [Pg.736]    [Pg.742]    [Pg.748]    [Pg.154]    [Pg.66]    [Pg.91]   
See also in sourсe #XX -- [ Pg.123 , Pg.124 ]




SEARCH



Cationic polymerization

Cationic polymerization polymerizations

Polyatomic Chalcogen Polymers and Polymeric Tellurium Cations

Polymer Synthesis by Cationic Polymerization

Polymer cationic

Polymer chemistry cationic polymerization

Selective cationic polymerization, polymers

Sequence-controlled polymers cationic polymerization

Synthetic polymers cationic polymerization

© 2024 chempedia.info