Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization heterogeneous catalysts

Study of the kinetics of the oxidation of asymmetric secondary hydroxylamines to nitrones with H2O2, catalyzed by methylrhenium trioxide, has led to the elucidation of the mechanism of the reaction (104). Full transformation of N,N -disubstituted hydroxylamines into nitrones upon treatment with H2O2 occurs on using polymeric heterogeneous catalysts such as polymer-supported methylrhenium trioxide systems (105). [Pg.143]

Polymeric enzymes and enzyme analogs constitute a completely separate topic. This field has recently been reviewed 133). Some of the materials described act as heterogeneous catalysts and could also be considered as polymeric heterogeneous catalysts. [Pg.30]

In the early 1950s, Ziegler observed that certain heterogeneous catalysts based on transition metals polymerized ethylene to a linear, high density material at modest pressures and temperatures. Natta showed that these catalysts also could produce highly stereospecific poly-a-olefins, notably isotactic polypropylene, and polydienes. They shared the 1963 Nobel Prize in chemistry for their work. [Pg.437]

The exopolyhedral metaHacarborane complex Ti(C2B2QH22)4, which is prepared by the reaction of TiCl and 1-Li-1,2-C2B2QH22, has also been reported to be an active heterogeneous catalyst for the polymerization of olefins when supported on alumina and in the presence of (C2H3)2A1C1 co-catalyst (230). [Pg.249]

In several papers (51, 84, 96, 104) the decrease of the polymerization rate with time was assumed to be caused by the decrease of C as a result of diffusional restrictions due to the formation of a polymer film on the catalyst surface. However, as a matter of experience in work with heterogeneous catalysts for ethylene polymerization, it is known that even for polymerization with no solvent, the formation of a solid polymer is possible at high rates (thousands of grams of polymer per gram of catalyst per hour) that are constant until large yields are reached (tens of kilograms of polymer per gram of catalyst). [Pg.181]

Efforts have been made to propose a heterogeneous version of this reaction by polymerization or support-anchoring of these N-containing hgands. In most cases, however, even if success was obtained by using these heterogeneous catalysts, their recycling remained non-efficient, mainly due to the poor stabihty of the active Pd(0) species. [Pg.143]

There is a whole spectrum of heterogeneous catalysts, but the most common types consist of an inorganic or polymeric support, which may be inert or have acid or basic functionality, together with a bound metal, often Pd, Pt, Ni or Co. Even if the support is inert its structure is of vital importance to the efficiency of the catal ic reaction. Since the reactants are in a different phase to the catalyst both diffusion and adsorption influence the overall rate, these factors to some extent depending on the nature and structure of the support. [Pg.88]

This complex and structurally related molecules served as a functional homogeneous model system for commercially used heterogeneous catalysts based on chromium (e.g. Cp2Cr on silica - Union Carbide catalyst). The kinetics of the polymerization have been studied to elucidate mechanistic features of the catalysis and in order to characterize the potential energy surface of the catalytic reaction. [Pg.153]

Bohm, L. L, Franke, R., Thum, G., The microreactors as a model for the description of the ethylene polymerization with heterogeneous catalysts, in Kaminsky, W., Sinn, H. (Eds.), Transition metals and organometallics as catalysts for olefln polymerization, pp. 391-403, Springer-Verlag, Berlin (1988). [Pg.108]

When describing the kinetics of a polymerization reaction involving a heterogeneous catalyst, we must assume that the activity of the catalyst remains constant. Why does this assumption fail ... [Pg.93]

The polymerization of ethylene was carried out in an identical way with these heterogeneous catalysts as with the homogeneous systems. Typical results are given in Table XII and show that the Si-0 ligand enhances the activity of the transition metal site for polymerization. Some of the higher activities are minimum values since the concentration of ethylene in the diluent is well below equilibrium concentrations and with these conditions the process is diffusion controlled. [Pg.296]

Heterogeneous catalysts have a tendency to cause gel formation in the solution polymerization of dienes. This adversely affects the polymerization and the quality of the end products. [Pg.60]

Although chromium-based ethylene polymerization catalysts have already been developed commercially, these processes are based on a heterogeneous catalyst... [Pg.40]

The Fischer-Tropsch synthesis, which may be broadly defined as the reductive polymerization of carbon monoxide, can be schematically represented as shown in Eq. (1). The CHO products in Eq. (1) are any organic molecules containing carbon, hydrogen, and oxygen which are stable under the reaction conditions employed in the synthesis. With most heterogeneous catalysts the primary products of the reaction are straight-chain alkanes, while the secondary products include branched-chain hydrocarbons, alkenes, alcohols, aldehydes, and carboxylic acids. The distribution of the various products depends on both the type of catalyst and the reaction conditions employed (4). [Pg.62]

Although this classic picture evolved from "soft, mononuclear transition metal complexes suffices to explain a great deal of carbon monoxide chemistry, it is not clear that it is complete or accurate for understanding processes whereby CO is reduced, deoxygenated, and/or polymerized to form methane, long-chain hydrocarbons, alcohols, and other oxocarbons, especially in cases where heterogeneous catalysts or "hard" metals are involved (6, 7, ,9,J 0). This deficiency of information has led to the search for new modes of carbon monoxide reactivity and to attempts to understand carbon monoxide chemistry in nontraditional environments ... [Pg.59]

Standard Oil A process for polymerizing ethylene and other linear olefins and di-olefins to make linear polymers. This is a liquid-phase process, operated in a hydrocarbon solvent at an intermediate pressure, using a heterogeneous catalyst such as nickel oxide on carbon, or vanadia or molybdena on alumina. Licensed to Furukawa Chemical Industry Company at Kawasaki, Japan. [Pg.254]

The chiral sites which are able to rationalize the isospecific polymerization of 1-alkenes are also able, in the framework of the mechanism of the chiral orientation of the growing polymer chain, to account for the stereoselective behavior observed for chiral alkenes in the presence of isospecific heterogeneous catalysts.104 In particular, the model proved able to explain the experimental results relative to the first insertion of a chiral alkene into an initial Ti-methyl bond,105 that is, the absence of discrimination between si and re monomer enantiofaces and the presence of diastereoselectivity [preference for S(R) enantiomer upon si (re) insertion]. Upon si (re) coordination of the two enantiomers of 3-methyl-l-pentene to the octahedral model site, it was calculated that low-energy minima only occur when the conformation relative to the single C-C bond adjacent to the double bond, referred to the hydrogen atom bonded to the tertiary carbon atom, is nearly anticlinal minus, A- (anticlinal plus, A+). Thus one can postulate the reactivity only of the A- conformations upon si coordination and of the A+ conformations upon re coordination (Figure 1.16). In other words, upon si coordination, only the synperiplanar methyl conformation would be accessible to the S enantiomer and only the (less populated) synperiplanar ethyl conformation to the R enantiomer this would favor the si attack of the S enantiomer with respect to the same attack of the R enantiomer, independent of the chirality of the catalytic site. This result is in agreement with a previous hypothesis of Zambelli and co-workers based only on the experimental reactivity ratios of the different faces of C-3-branched 1-alkenes.105... [Pg.42]

The advantages that heterogeneous catalysts have is that they are easily separable from the product, and can be recycled. A number of studies have been conducted in which ligands have been attached or bound to polymeric material to provide an immobilized ligand, and these include polyacrylate and silica [27], polyurea [28], polythiourea [29], polyether [30, 31] and dendritic [32] systems. Upon metal coordination, the immobilized catalysts have retained most of the activity and selectivity, but they now provide the advantage of simple separation and recycling. For exam-... [Pg.1220]


See other pages where Polymerization heterogeneous catalysts is mentioned: [Pg.90]    [Pg.90]    [Pg.490]    [Pg.383]    [Pg.438]    [Pg.47]    [Pg.2092]    [Pg.168]    [Pg.213]    [Pg.72]    [Pg.117]    [Pg.218]    [Pg.427]    [Pg.48]    [Pg.193]    [Pg.319]    [Pg.320]    [Pg.177]    [Pg.87]    [Pg.73]    [Pg.466]    [Pg.132]    [Pg.233]    [Pg.83]    [Pg.1426]    [Pg.284]    [Pg.461]    [Pg.485]    [Pg.24]   
See also in sourсe #XX -- [ Pg.297 ]




SEARCH



Alumina heterogeneous polymerization catalysts

Catalysts heterogeneity

Catalysts heterogeneous

Catalysts heterogenous

Catalysts polymerizing

Heterogeneous Polymerization Catalysts Derived from Transition Metal Alkyl Compounds

Heterogeneous catalysts, site-controlled stereospecific polymerizations

Heterogeneous polymeric catalysts

Heterogeneous polymerization solid catalysts

Heterogenized catalysts

Heterogenized transition metal catalysts polymerization with

Olefins heterogeneous polymerization catalysts

Silica heterogeneous polymerization catalysts from

Stereospecific polymerizations heterogeneous catalysts

Transition metal alkyl compounds heterogeneous polymerization catalysts

Transition metal heterogeneous polymerization catalysts

© 2024 chempedia.info