Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization caprolactones

Lactones. Esters cycZo-(CH2)nC02 (ra = 4, 5) have been shown by Yamashita and co-workers to be efficiently polymerized by the lanthanocenes (C5(CH3)5)2Sm((CH3))(THF) and [Cp2Yb(CH3)]2 (229). Recent work of Evans and co-workers has revealed that the highly reactive, divalent pentamethyl-samarocene, optionally solvated by THE, which can effectively polymerize -caprolactone by ring-opening (230), also copolymerizes ethylene carbonate and -caprolactone (eq. 33) (231). Even when present at levels up to 23 mol% in the copolymer, the carbonate imits appear to be isolated, indicating a low level of blockiness. [Pg.4601]

In the organic chemicals industry, H2O2 is used in the production of epoxides, propylene oxide, and caprolactones for PVC stabilizers and polyurethanes, in the manufacture of organic peroxy compounds for use as polymerization initiators and curing agents, and in the synthesis of fine chemicals such as hydroquinone, pharmaceuticals (e.g. cephalosporin) and food products (e.g. tartaric acid). [Pg.634]

Cyclohexanone gives c-caprolactone, bp 102-10477 mm, which may polymerize on standing. The lactone may be converted easily to the corresponding e-hydroxy-hydrazide by heating on a steam bath with a slight excess of 100% hydrazine hydrate. The crude hydrazide may be recrystallized from ethyl acetate, mp 114-115°. [Pg.10]

Suspension biock copolymerization using MPI was reported elsewhere, but that of using MAI was recently reported [29]. Starting with type II MAI composed of poly(caprolactone), PBd, or PDMS, one-step suspension polymerization of St or MMA was successfully car-... [Pg.759]

Poly(f -caprolactone) (PCL), the most representative member of this polyester family, is obtained by the ring-opening polymerization of e-caprolactone. It is a low-7 (60°C), low-Tg (—60°C) semicrystalline polyester that presents mechanical properties resembling those of low-density polyethylene (Table 2.10). [Pg.43]

Lipases have also been used as initiators for the polymerization of lactones such as /3-bu tyro lac tone, <5-valerolactone, e-caprolactone, and macrolides.341,352-357 In this case, the key step is the reaction of lactone with die serine residue at the catalytically active site to form an acyl-enzyme hydroxy-terminated activated intermediate. This intermediate then reacts with the terminal hydroxyl group of a n-mer chain to produce an (n + i)-mer.325,355,358,359 Enzymatic lactone polymerization follows a conventional Michaelis-Menten enzymatic kinetics353 and presents a controlled character, without termination and chain transfer,355 although more or less controlled factors, such as water content of the enzyme, may affect polymerization rate and the nature of endgroups.360... [Pg.84]

The preparation of poly( -caprolactone) given below is a bulk ring-opening polymerization of -caprolactone initiated by Ti(OBu)4 in the presence of... [Pg.98]

Preparation and characteristics of ABA type polycaprolactone-b-polydimethyl-siloxane block copolymers have been recently reported 289). In this study, ring-opening polymerization of e-caprolactone was achieved in melt, using a hydroxybutyl terminated PSX as the initiator and a catalytic amount of stannous octoate. Reactions were completed in two steps as shown in Reaction Scheme XIX. [Pg.51]

In recent years homoleptic lanthanide(III) tris(amidinates) and guanidinates have been demonstrated to exhibit extremely high activity for the ring-opening polymerization of polar monomers such as e-caprolactone and trimethylene... [Pg.240]

The poly(glycolide-co-caprolactone) (PGCL) copolymer was mainly synthesized by the ringopening polymerization. A copolymer with 1 1 mole ratio was synthesized by the ring-opening polymerization in the presence of the catalyst Sn(Oct)2 by Lee and coworkers. The polymerization was under vacuum, and heated in an oil bath at 170°C for 20 h. The copolymer was then dried under vacuum at room temperature for 72 h. The schematic reaction equations are shown in Schemes 8.5 and 8.6. [Pg.228]

A star copolymer (SCP) of PCLA was synthesized by Younes and coworkers. This kind of SCP PCLA elastomer was also synthesized in two steps. First, the small molecular SCP was produced by ring-opening polymerization of s-caprolactone (s-CL) with glycerol as initiator and stannous 2-ethyUiexanoate as catalyst. Second, the living SCP was further reacted with different ratios of a cross-linking monomer, such as 2,2-bis(s-CL-4-yl)-propane (BCP) and s-CL. The SCP elastomers had very low glass transition temperature (—32°C). It was reported that the SCPs were soft and weak with physical properties similar to those of natural bioelastomers such as elastin. A logarithmic decrease in each tensile property with time was observed in this SCP PCLA. [Pg.229]

Rate of hydration of the polymeric materials has been shown to be an important consideration in regard to drug release. Gilding and Reed (24) demonstrated that water uptake increases as the glycolide ratio in the copolymer increases. The extent of block or random structure in the copolymer can also affect the rate of hydration and the rate of degradation (25). Careful control of the polymerization conditions is required in order to afford reproducible drug release behavior in a finished product. Kissel (26) showed drastic differences in water uptake between various homopolymers and copolymers of caprolactone, lactide, and glycolide. [Pg.3]

The general subject of lactone polymerization has been reviewed (7, 19). Polymerization of e-caprolactone can be effected by at least four different mechanisms categorized as anionic, cationic, coordination, and radical. Each method has unique attributes, providing... [Pg.72]

The anionic method of polymerization is most useful for the synthesis of low molecular weight hydroxy-terminated oligomers and polymers that are to be further processed. For example, the treatment of hydroxy-terminated oligomers with isocyanates has been used to obtain polyester-urethanes (9,20), while triblock copolymers (PCL-PEG-PCL) are prepared by initiating the polymerization of e-caprolactone with the disodium alcoholate from polyethylene glycol (26). [Pg.73]

A related strategy has been employed to prepare a triblock copolymer of styrene and e-caprolactone by initiating the polymerization... [Pg.73]

FIGURE 2 Anionic, cationic, and coordination mechanisms of polymerization of e-caprolactone and related lactones. [Pg.74]

FIGURE 14 Different skeletal structures of PCL and its copolymers derived from the polymerization of e-caprolactone using mono- and polyfunctional initiators. [Pg.76]

Alkyl sulfonates are very effective cationic initiators of e-caprolactone, although only the more reactive methyl triflate and methyl fluorosulfate result in a high conversion. The mechanism of polymerization in the presence of these initiators is believed to involve methylation of the exocyclic carbonyl oxygen, followed by partial ring opening of the activated lactone by the counteranion (Fig. [Pg.77]

The living nature of PCL obtained in the presence of Zn(OAl-(OPri)2)2 has been used to prepare both di- and triblock copolymers of e-caprolactone and lactic acid (42,43). Treatment of the initial living PCL with dilactide afforded a PCL-PLA diblock with M /Mn = 1.12, with each block length determined by the proportions of the reactants, i.e., the ratio of [monomer]/[Zn]. While the living diblock copolymer continued to initiate dilactide polymerization, it failed to initiate e-caprolactone polymerization. To obtain a PCL-PLA-PCL triblock, it was necessary to treat the living PCL-PLA-OAIR2 intermediate with ethylene oxide, then activate the hydroxy-terminated PCL-PLA-(OCH2CH2)nOH with a modified Teyssie catalyst (Fig. 5). [Pg.78]

A porphinatoaluminum alkoxide is reported to be a superior initiator of c-caprolactone polymerization (44,45). A living polymer with a narrow molecular weight distribution (M /Mjj = 1.08) is ob-tmned under conditions of high conversion, in part because steric hindrance at the catalyst site reduces intra- and intermolecular transesterification. Treatment with alcohols does not quench the catalytic activity although methanol serves as a coinitiator in the presence of the aluminum species. The immortal nature of the system has been demonstrated by preparation of an AB block copolymer with ethylene oxide. The order of reactivity is e-lactone > p-lactone. [Pg.78]

Stannous octoate has the advantage of having been used to prepare polymers (Silastic, Capronor) for which substantial toxicological data are now available (6,48). Stannous octoate-initiated polymerization has been used to prepare copolymers of e-caprolactone with other lactones, including diglycolide, dilactide, 6-valerolactone, e-decalactone, and other alkyl-substituted e-caprolactones. Conducting... [Pg.79]

Initiation of stannous octoate-catalyzed copolymerization of e-caprolactone with glycerol was used to prepare a series of trifunctional hydroxy-end blocked oligomers, which were then treated with hexane-1,6-diisocyanate to form elastomeric polyesterurethanes with different crosslink densities (49). Initiation of e-caprolactone polymerization with a hydroxypropyl-terminated polydimethylsiloxane in the presence of dibutyl tin dilaurate has been used to prepare a polyester-siloxane block copolymer (Fig. 4) (50). [Pg.80]

Ring-opening polymerization of 2-methylene-l,3-dioxepane (Fig. 6) represents the single example of a free radical polymerization route to PCL (51). Initiation with AIBN at SO C afforded PCL with a of 42,000 in 59% yield. While this monomer is not commercially available, the advantage of this method is that it may be used to obtain otherwise inaccessible copolymers. As an example, copolymerization with vinyl monomers has afforded copolymers of e-caprolactone with styrene, 4-vinylanisole, methyl methacrylate, and vinyl acetate. [Pg.80]


See other pages where Polymerization caprolactones is mentioned: [Pg.145]    [Pg.134]    [Pg.81]    [Pg.2195]    [Pg.145]    [Pg.134]    [Pg.81]    [Pg.2195]    [Pg.241]    [Pg.364]    [Pg.739]    [Pg.545]    [Pg.558]    [Pg.31]    [Pg.86]    [Pg.579]    [Pg.578]    [Pg.5]    [Pg.24]    [Pg.29]    [Pg.51]    [Pg.154]    [Pg.159]    [Pg.333]    [Pg.335]    [Pg.335]    [Pg.71]    [Pg.73]    [Pg.73]    [Pg.77]    [Pg.77]    [Pg.78]   
See also in sourсe #XX -- [ Pg.224 ]




SEARCH



Anionic polymerization of caprolactone

Caprolactone

Caprolactone, ring-opening polymerization

Caprolactones

E-Caprolactone ring-opening polymerization

E-Caprolactone, polymerization

Polymerization 8-caprolactone

Polymerization of e-caprolactone

Ring-opening polymerization of caprolactone

© 2024 chempedia.info