Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer studies solid state reactions

One of the best-studied solid-state reactions is the photopolymerization of distyrylpyrazine (9) and related compounds to give crystalline polymers containing cyclobutane rings (Scheme 10). This reaction is reminiscent of Schmidt s early work on cinnamic acids, although the presence of two double bonds per monomer can lead to oligomeric or polymeric rather than solely dimeric products. The four-center reaction of 9, and other related polymerizations, have been reviewed in detail by Hasegawa, who has played a central role in the study of these systems... [Pg.213]

Because observed rate enhancements are usually small, or zero, nonthermal effects do not seem to be important in MW heated reactions in homogeneous media, except possibly in some reactions of polymers and reactions in nonpolar solvents. Relatively few studies have been conducted on MW-assisted reactions of polar reactants in nonpolar solvents. Also, since there is some disagreement as to whether or not these reactions are accelerated significantly by MW, in comparison with conventionally heated reactions at the same temperature, more research on the effect of MW irradiation on the rates of these reactions is required. Nonthermal effects may, however, explain the more substantial MW rate enhancements in solvent-free reactions on solid supports [44] (see Chapt. 5) and solid state reactions [68, 69]. [Pg.135]

Such transformations have been extensively studied in quenched steels, but they can also be found in nonferrous alloys, ceramics, minerals, and polymers. They have been studied mainly for technical reasons, since the transformed material often has useful mechanical properties (hard, stiff, high damping (internal friction), shape memory). Martensitic transformations can occur at rather low temperature ( 100 K) where diffusional jumps of atoms are definitely frozen, but also at much higher temperature. Since they occur without transport of matter, they are not of central interest to solid state kinetics. However, in view of the crystallographic as well as the elastic and even plastic implications, diffusionless transformations may inform us about the principles involved in the structural part of heterogeneous solid state reactions, and for this reason we will discuss them. [Pg.296]

Polymers are sometimes studied in solution. This has the advantage that the systems are free from kinetic and mechanistic complexities typical of solid state reactions. However, the conditions are far from natural. When solid polymers are to be studied, reliable results are most easily obtained by irradiating thin films cast from solutions. The use of thin films ensures homogeneous dissipation of energy into the sample, and the solvent casting technique does not require high temperatures which are sometimes responsible for partial oxidation or degradation of the polymer prior to the photolysis. [Pg.346]

Recently, a novel porphyrin-based polymer, namely a poly(CO-Ru(n)-64) (with CO-Ru(n)-64 = ruthenium carbonyl spirobifluorenylporphyrin), was prepared electrochemically and used for the transfer of carbene to olefins and sulphides in a solid-state reaction. In another original study, a bimetallic porphyrin film using 65 was studied as electrode modifier with catalytic activity for molecular oxygen reduction and hydrogen peroxide reduction " . [Pg.392]

Both crystal structures are monoclinic with two monomers or monomer units of different orientation per unit cell (Fig. 9.3 sketches only one of these two.). The chemical bond between two carbons of nearest neighbour diacetylenes (1,4-addition) results in the linear polymer chain and the small change in the lattice parameter along the b-axis prevents the destruction of the macroscopic single crystal during the topochemical reaction. Several surfaces of diacetylene crystals have been studied by atomic force microscopy (AFM) in order to investigate both, the single crystal surface structure and solid state reactions at the surface [129, 131]. [Pg.124]

Thymine derivatives " are very resistant to UV irradiation in dilute solution because the triplet state is the precursor of the photodimer and intersystem crossing of thymine is very low. The yield of the photodimer in solution is low, but a high yield of photodimer can be obtained with acetone as the sensitizer. In DNA polymers and solid state, however, the photodimerization reaction is fast and proceeds through the singlet state. The photodimerizations of thymine oHgomers and polymers were studied in the presence of isoprene as a triplet quencher. The photodimerization of the thymine, monomeric and dimeric model, were quenched by isoprene, but the photodimerization of a polymer with thymine units was not quenched. This result appears to indicate that the photodimerization of aggregated thymine compounds occurs almost completely from the singlet state. ... [Pg.2120]

Work on phosphazene high polymers continues to attract increased interest. Advances in the study of the ring-opening polymerization, and physical characterization in the solid state, of the materials produced by these reactions have been reported. [Pg.460]

The zinc complex of 1,1,1,5,5,5-hexafluoroacetylacetonate forms coordination polymers in reaction with either 2,5-bis(4-ethynylpyridyl)furan or l,2-bis(4-ethynylpyridyl)benzene. The X-ray crystal structures demonstrate an isotactic helical structure for the former and a syndio-tactic structure for the latter in the solid state. Low-temperature 1H and 19F NMR studies gave information on the solution structures of oligomers. Chiral polymers were prepared from L2Zn where L = 3-((trifluoromethyl)hydroxymethylene)-(+)-camphorate. Reaction with 2,5-bis(4-ethy-nylpyridyl)furan gave a linear zigzag structure and reaction with tris(4-pyridyl)methanol a homo-chiral helical polymer.479... [Pg.1187]

With further understanding how molecular rotors interact with their environment and with application-specific chemical modifications, a more widespread use of molecular rotors in biological and chemical studies can be expected. Ratiometric dyes and lifetime imaging will enable accurate viscosity measurements in cells where concentration gradients exist. The examination of polymerization dynamics benefits from the use of molecular rotors because of their real-time response rates. Presently, the reaction may force the reporters into specific areas of the polymer matrix, for example, into water pockets, but targeted molecular rotors that integrate with the matrix could prevent this behavior. With their relationship to free volume, the field of fluid dynamics can benefit from molecular rotors, because the applicability of viscosity models (DSE, Gierer-Wirtz, free volume, and WLF models) can be elucidated. Lastly, an important field of development is the surface-immobilization of molecular rotors, which promises new solid-state sensors for microviscosity [145]. [Pg.300]


See other pages where Polymer studies solid state reactions is mentioned: [Pg.263]    [Pg.43]    [Pg.105]    [Pg.108]    [Pg.11]    [Pg.6]    [Pg.105]    [Pg.82]    [Pg.280]    [Pg.369]    [Pg.1322]    [Pg.178]    [Pg.198]    [Pg.141]    [Pg.89]    [Pg.209]    [Pg.177]    [Pg.48]    [Pg.5169]    [Pg.5170]    [Pg.132]    [Pg.188]    [Pg.117]    [Pg.2]    [Pg.215]    [Pg.549]    [Pg.153]    [Pg.548]    [Pg.593]    [Pg.141]    [Pg.177]    [Pg.97]    [Pg.300]    [Pg.398]    [Pg.118]    [Pg.272]    [Pg.1079]    [Pg.183]    [Pg.569]    [Pg.56]    [Pg.229]   


SEARCH



Polymers studied

Solid state reactions

Solid-state polymer reactions

© 2024 chempedia.info