Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer reaction conditions

Transition metal compound Main group metal compound Monomer Polymer Reaction conditions... [Pg.677]

Oxidative degradation has a very complex mechanism, occurring by several simultaneous and successive reactions. The individual reactions and even the elementary steps [80, 84] may be affected by chemical structure, morphology of polymers, reaction conditions, and so forth. [Pg.428]

Dimerization in concentrated sulfuric acid occurs mainly with those alkenes that form tertiary carbocations In some cases reaction conditions can be developed that favor the formation of higher molecular weight polymers Because these reactions proceed by way of carbocation intermediates the process is referred to as cationic polymerization We made special mention m Section 5 1 of the enormous volume of ethylene and propene production in the petrochemical industry The accompanying box summarizes the principal uses of these alkenes Most of the ethylene is converted to polyethylene, a high molecular weight polymer of ethylene Polyethylene cannot be prepared by cationic polymerization but is the simplest example of a polymer that is produced on a large scale by free radical polymerization... [Pg.267]

The reaction conditions can be varied so that only one of those monomers is formed. 1-Hydroxy-methylurea and l,3-bis(hydroxymethyl)urea condense in the presence of an acid catalyst to produce urea formaldehyde resins. A wide variety of resins can be obtained by careful selection of the pH, reaction temperature, reactant ratio, amino monomer, and degree of polymerization. If the reaction is carried far enough, an infusible polymer network is produced. [Pg.1025]

At first glance it appears that these systems do conform fully to the discussion above this is an oversimplification, however. The ortho and para hydrogens in phenol are not equal in reactivity, for example. In addition, the technology associated with these polymers involves changing the reaction conditions as the polymerization progresses to shift the proportions of several possible reactions. Accordingly, the product formed depends on the nature of the catalyst used, the proportions of the monomers, and the temperature. Sometimes other additives or fillers are added as well. [Pg.324]

Acryhc esters dimerize to give the 2-methylene glutaric acid esters catalyzed by tertiary organic phosphines (37) or organic phosphorous triamides, phosphonous diamides, or phosphinous amides (38). Yields of 75—80% dimer, together with 15—20% trimer, are obtained. Reaction conditions can be varied to obtain high yields of trimer, tetramer, and other polymers. [Pg.151]

The vast majority of commercial apphcations of methacryhc acid and its esters stem from their facile free-radical polymerizabiUty (see Initiators, FREE-RADICAl). Solution, suspension, emulsion, and bulk polymerizations have been used to advantage. Although of much less commercial importance, anionic polymerizations of methacrylates have also been extensively studied. Strictiy anhydrous reaction conditions at low temperatures are required to yield high molecular weight polymers in anionic polymerization. Side reactions of the propagating anion at the ester carbonyl are difficult to avoid and lead to polymer branching and inactivation (38—44). [Pg.247]

Primary aromatic amines react with aldehydes to form Schiff bases. Schiff bases formed from the reaction of lower aUphatic aldehydes, such as formaldehyde and acetaldehyde, with primary aromatic amines are often unstable and polymerize readily. Aniline reacts with formaldehyde in aqueous acid solutions to yield mixtures of a crystalline trimer of the Schiff base, methylenedianilines, and polymers. Reaction of aniline hydrochloride and formaldehyde also yields polymeric products and under certain conditions, the predominant product is 4,4 -methylenedianiline [101 -77-9] (26), an important intermediate for 4,4 -methylenebis(phenyhsocyanate) [101-68-8], or MDI (see Amines, aromatic amines, l thylenedianiline). [Pg.230]

Stereoregular Polymerization. Chemists at GAF Corporation were first to suggest that stereoregularity or the lack thereof is responsible for both nontacky and crystalline or tacky and amorphous polymers generated from IBVE with BF2 0(C2H )2, depending on the reaction conditions (22,23). In addition, it was shown that the crystalline polymer is actually isotactic (24). Subsequentiy, the reaction conditions necessary to form such polymers have not only been demonstrated, but the stereoregular polymerization has been extended to other monomers, such as methyl vinyl ether (25,26). [Pg.516]

Because PEA is such an important fragrance material this simple, essentially one-step process has been exhaustively studied to optimize reaction conditions and purification procedures. Because of the high reactivity of the iatermediates and the tendency toward polymer formation, critical factors such as throughput, temperature, molar ratios of reactants, addition rates, reactor materials and design, and agitation rate must be carefully balanced to provide an economical product with acceptable odor properties. [Pg.62]

In actual practice, the reaction of urea with formaldehyde produces a distribution of polymers of varying chain length. The distribution is affected by the U/E mole ratio as well as reaction conditions such as pH, temperature, and reaction time. In general, higher U/E ratios produce polymer distributions... [Pg.131]

These values assume chlorination in carbon tetrachloride solution under homogeneous conditions favoring random distribution of chlorine atoms along the chain. Viscous reaction conditions, faster chlorine addition rates, lower temperature conditions, etc, can lead to higher AH at equivalent chlorine levels because of more blocky chlorine distribution on the polymer chain. [Pg.490]

There is a large range of resins available for SPOS. These resins are derivatised polymer supports with a range of linkers. The roles of linkers are (i) to provide point(s) of attachment for the tethered molecule, akin to a solid supported protecting group(s), (ii) to provide distance from the polymeric backbone in order to minimise interactions with the backbone, (iii) to enable cleavage of product molecules under conditions compatible with the stability of the molecules and the reaction conditions employed for chemical transformations. Hence in order to... [Pg.74]

The earliest preparation of cellulose acetate is credited to Schiitzenberger in 1865. The method used was to heat the cotton with acetic anhydride in sealed tubes at 130-140°C. The severe reaction conditions led to a white amorphous polymer but the product would have been severely degraded and the process difficult to control. Subsequent studies made by Liebermann, Francimont, Miles, the Bayer Company and by other workers led to techniques for controlled acetylation under less severe conditions. [Pg.621]

The 2,6-DHMP condensation produced only one dimer and a significant amount of trimer as depicted in Scheme 8. The structure of the trimer was not reported. The reaction path is analogous to that of 2-HMP, but occurred at a faster rate. 2,6-DHMP was the only derivative to form a significant amount of trimer under the reaction conditions studied. This supports the idea that ortho-linked PF polymers should have a faster cure than others. It also points out the futility of attempting to manufacture an ortho-Ymkcd polymer under alkaline conditions. Extension of the polymerization process as depicted in Scheme 8 leads to a continual reduction in the amount of para functionality available for condensation as shown in Table 7. [Pg.910]

The next major bonded phase project was the development of the GBR resin, which stands for modified glucose bonded on both the backbone and the ring of basic PDVB gels. The manufacture of this product was ultimately achieved, as outlined later. The gel is first brominated, which places bromine atoms on both tertiary hydrogens of the PDVB. The brominated gel is then reacted with chlorosulfonic acid, and a specially treated reduced D-glucosamine is coupled to the gel. This process has the potential to covalently bond up to three sugar residues to each available divinylbenzene residue in the PDVB polymer. The exact reaction conditions used are proprietary however, the surface of the finished product is believed to look similar to Figs. 13.11 and 13.12. [Pg.374]


See other pages where Polymer reaction conditions is mentioned: [Pg.300]    [Pg.1184]    [Pg.479]    [Pg.23]    [Pg.24]    [Pg.25]    [Pg.300]    [Pg.1184]    [Pg.479]    [Pg.23]    [Pg.24]    [Pg.25]    [Pg.14]    [Pg.302]    [Pg.401]    [Pg.75]    [Pg.170]    [Pg.283]    [Pg.304]    [Pg.307]    [Pg.329]    [Pg.11]    [Pg.269]    [Pg.441]    [Pg.445]    [Pg.60]    [Pg.80]    [Pg.242]    [Pg.272]    [Pg.272]    [Pg.132]    [Pg.493]    [Pg.495]    [Pg.495]    [Pg.188]    [Pg.144]    [Pg.1]    [Pg.492]    [Pg.591]    [Pg.918]    [Pg.4]   
See also in sourсe #XX -- [ Pg.279 ]




SEARCH



Polymer conditioning

Polymer conditions

Reaction condition

© 2024 chempedia.info